Loading…

Interpreting Neutron Reflectivity Profiles of Diblock Copolymer Nanocomposite Thin Films Using Hybrid Particle-Field Simulations

Mixtures of block copolymers and nanoparticles (block copolymer nanocomposites) are known to microphase separate into a plethora of microstructures, depending on the composition, length scale, and nature of interactions among its different constituents. Confining these nanocomposites in thin films y...

Full description

Saved in:
Bibliographic Details
Published in:Macromolecules 2018-04, Vol.51 (8), p.3116-3125
Main Authors: Mahalik, Jyoti P, Dugger, Jason W, Sides, Scott W, Sumpter, Bobby G, Lauter, Valeria, Kumar, Rajeev
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a402t-e230298a2d5163d779b026c7f50e3ed7cd7002e265664ab2915d7f1f85c014633
cites cdi_FETCH-LOGICAL-a402t-e230298a2d5163d779b026c7f50e3ed7cd7002e265664ab2915d7f1f85c014633
container_end_page 3125
container_issue 8
container_start_page 3116
container_title Macromolecules
container_volume 51
creator Mahalik, Jyoti P
Dugger, Jason W
Sides, Scott W
Sumpter, Bobby G
Lauter, Valeria
Kumar, Rajeev
description Mixtures of block copolymers and nanoparticles (block copolymer nanocomposites) are known to microphase separate into a plethora of microstructures, depending on the composition, length scale, and nature of interactions among its different constituents. Confining these nanocomposites in thin films yields an even larger array of structures, which are not normally observed in the bulk. In contrast to the bulk, exploring various microstructures in thin films by the experimental route remains a challenging task. In this work, we present a modeling scheme using the hybrid particle-field simulation approach based on a coarse-grained model for representing polymer chains by continuous curves and coupling fictitious dynamics of nanoparticles to the thermodynamic forces. The simulation approach is general enough to predict microphase separation in thin films of any block copolymer nanocomposite with the specific details encoded in the interaction parameters. The approach is benchmarked by comparisons with the depth profiles obtained from the neutron reflectivity experiments for symmetric poly­(deuterated styrene-b-n-butyl methacrylate) copolymers blended with spherical magnetite nanoparticles covered by hydrogenated poly­(styrene) corona. We show that the hybrid particle-field approach is an accurate way to model and extract quantitative information about the physical parameters in the block copolymer nanocomposites. This work benchmarks the application of the hybrid particle-field model to derive the interaction parameters for exploring different microstructures in thin films containing block copolymer nanocomposites.
doi_str_mv 10.1021/acs.macromol.8b00180
format article
fullrecord <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1435257</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a605996829</sourcerecordid><originalsourceid>FETCH-LOGICAL-a402t-e230298a2d5163d779b026c7f50e3ed7cd7002e265664ab2915d7f1f85c014633</originalsourceid><addsrcrecordid>eNp9kLtOwzAUhi0EEqXwBgwWe4ovcS4jKpRWqkoF7Rw5jkNdHDuyXaRsPDquWlamM_wXnf8D4B6jCUYEP3LhJx0XznZWT4oaIVygCzDCjKCEFZRdghFCJE1KUubX4Mb7fbRgltIR-FmYIF3vZFDmE67kIThr4LtstRRBfaswwLWzrdLSQ9vCZ1VrK77g1PZWD510cMWNFbbrrVdBws1OGThTuvNw64-N86F2qoFr7oISWiYzJXUDP1R30Dwoa_wtuGq59vLufMdgO3vZTOfJ8u11MX1aJjxFJCSSUETKgpOG4Yw2eV7WiGQibxmSVDa5aPI4UZKMZVnKa1Ji1uQtbgsmEE4zSsfg4dRrfVCVF_FbsRPWmLizwillhOXRlJ5MkaX3TrZV71TH3VBhVB1RVxF19Ye6OqOOMXSKHdW9PTgTl_wf-QVUU4fZ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Interpreting Neutron Reflectivity Profiles of Diblock Copolymer Nanocomposite Thin Films Using Hybrid Particle-Field Simulations</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Mahalik, Jyoti P ; Dugger, Jason W ; Sides, Scott W ; Sumpter, Bobby G ; Lauter, Valeria ; Kumar, Rajeev</creator><creatorcontrib>Mahalik, Jyoti P ; Dugger, Jason W ; Sides, Scott W ; Sumpter, Bobby G ; Lauter, Valeria ; Kumar, Rajeev ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)</creatorcontrib><description>Mixtures of block copolymers and nanoparticles (block copolymer nanocomposites) are known to microphase separate into a plethora of microstructures, depending on the composition, length scale, and nature of interactions among its different constituents. Confining these nanocomposites in thin films yields an even larger array of structures, which are not normally observed in the bulk. In contrast to the bulk, exploring various microstructures in thin films by the experimental route remains a challenging task. In this work, we present a modeling scheme using the hybrid particle-field simulation approach based on a coarse-grained model for representing polymer chains by continuous curves and coupling fictitious dynamics of nanoparticles to the thermodynamic forces. The simulation approach is general enough to predict microphase separation in thin films of any block copolymer nanocomposite with the specific details encoded in the interaction parameters. The approach is benchmarked by comparisons with the depth profiles obtained from the neutron reflectivity experiments for symmetric poly­(deuterated styrene-b-n-butyl methacrylate) copolymers blended with spherical magnetite nanoparticles covered by hydrogenated poly­(styrene) corona. We show that the hybrid particle-field approach is an accurate way to model and extract quantitative information about the physical parameters in the block copolymer nanocomposites. This work benchmarks the application of the hybrid particle-field model to derive the interaction parameters for exploring different microstructures in thin films containing block copolymer nanocomposites.</description><identifier>ISSN: 0024-9297</identifier><identifier>EISSN: 1520-5835</identifier><identifier>DOI: 10.1021/acs.macromol.8b00180</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>MATERIALS SCIENCE</subject><ispartof>Macromolecules, 2018-04, Vol.51 (8), p.3116-3125</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a402t-e230298a2d5163d779b026c7f50e3ed7cd7002e265664ab2915d7f1f85c014633</citedby><cites>FETCH-LOGICAL-a402t-e230298a2d5163d779b026c7f50e3ed7cd7002e265664ab2915d7f1f85c014633</cites><orcidid>0000-0003-0989-6563 ; 0000-0001-6341-0355 ; 0000-0003-4448-4126 ; 0000-0002-1196-0205 ; 0000-0001-9494-3488 ; 0000000344484126 ; 0000000211960205 ; 0000000163410355 ; 0000000309896563 ; 0000000194943488</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,778,782,883,27911,27912</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1435257$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Mahalik, Jyoti P</creatorcontrib><creatorcontrib>Dugger, Jason W</creatorcontrib><creatorcontrib>Sides, Scott W</creatorcontrib><creatorcontrib>Sumpter, Bobby G</creatorcontrib><creatorcontrib>Lauter, Valeria</creatorcontrib><creatorcontrib>Kumar, Rajeev</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)</creatorcontrib><title>Interpreting Neutron Reflectivity Profiles of Diblock Copolymer Nanocomposite Thin Films Using Hybrid Particle-Field Simulations</title><title>Macromolecules</title><addtitle>Macromolecules</addtitle><description>Mixtures of block copolymers and nanoparticles (block copolymer nanocomposites) are known to microphase separate into a plethora of microstructures, depending on the composition, length scale, and nature of interactions among its different constituents. Confining these nanocomposites in thin films yields an even larger array of structures, which are not normally observed in the bulk. In contrast to the bulk, exploring various microstructures in thin films by the experimental route remains a challenging task. In this work, we present a modeling scheme using the hybrid particle-field simulation approach based on a coarse-grained model for representing polymer chains by continuous curves and coupling fictitious dynamics of nanoparticles to the thermodynamic forces. The simulation approach is general enough to predict microphase separation in thin films of any block copolymer nanocomposite with the specific details encoded in the interaction parameters. The approach is benchmarked by comparisons with the depth profiles obtained from the neutron reflectivity experiments for symmetric poly­(deuterated styrene-b-n-butyl methacrylate) copolymers blended with spherical magnetite nanoparticles covered by hydrogenated poly­(styrene) corona. We show that the hybrid particle-field approach is an accurate way to model and extract quantitative information about the physical parameters in the block copolymer nanocomposites. This work benchmarks the application of the hybrid particle-field model to derive the interaction parameters for exploring different microstructures in thin films containing block copolymer nanocomposites.</description><subject>MATERIALS SCIENCE</subject><issn>0024-9297</issn><issn>1520-5835</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kLtOwzAUhi0EEqXwBgwWe4ovcS4jKpRWqkoF7Rw5jkNdHDuyXaRsPDquWlamM_wXnf8D4B6jCUYEP3LhJx0XznZWT4oaIVygCzDCjKCEFZRdghFCJE1KUubX4Mb7fbRgltIR-FmYIF3vZFDmE67kIThr4LtstRRBfaswwLWzrdLSQ9vCZ1VrK77g1PZWD510cMWNFbbrrVdBws1OGThTuvNw64-N86F2qoFr7oISWiYzJXUDP1R30Dwoa_wtuGq59vLufMdgO3vZTOfJ8u11MX1aJjxFJCSSUETKgpOG4Yw2eV7WiGQibxmSVDa5aPI4UZKMZVnKa1Ji1uQtbgsmEE4zSsfg4dRrfVCVF_FbsRPWmLizwillhOXRlJ5MkaX3TrZV71TH3VBhVB1RVxF19Ye6OqOOMXSKHdW9PTgTl_wf-QVUU4fZ</recordid><startdate>20180424</startdate><enddate>20180424</enddate><creator>Mahalik, Jyoti P</creator><creator>Dugger, Jason W</creator><creator>Sides, Scott W</creator><creator>Sumpter, Bobby G</creator><creator>Lauter, Valeria</creator><creator>Kumar, Rajeev</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-0989-6563</orcidid><orcidid>https://orcid.org/0000-0001-6341-0355</orcidid><orcidid>https://orcid.org/0000-0003-4448-4126</orcidid><orcidid>https://orcid.org/0000-0002-1196-0205</orcidid><orcidid>https://orcid.org/0000-0001-9494-3488</orcidid><orcidid>https://orcid.org/0000000344484126</orcidid><orcidid>https://orcid.org/0000000211960205</orcidid><orcidid>https://orcid.org/0000000163410355</orcidid><orcidid>https://orcid.org/0000000309896563</orcidid><orcidid>https://orcid.org/0000000194943488</orcidid></search><sort><creationdate>20180424</creationdate><title>Interpreting Neutron Reflectivity Profiles of Diblock Copolymer Nanocomposite Thin Films Using Hybrid Particle-Field Simulations</title><author>Mahalik, Jyoti P ; Dugger, Jason W ; Sides, Scott W ; Sumpter, Bobby G ; Lauter, Valeria ; Kumar, Rajeev</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a402t-e230298a2d5163d779b026c7f50e3ed7cd7002e265664ab2915d7f1f85c014633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>MATERIALS SCIENCE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mahalik, Jyoti P</creatorcontrib><creatorcontrib>Dugger, Jason W</creatorcontrib><creatorcontrib>Sides, Scott W</creatorcontrib><creatorcontrib>Sumpter, Bobby G</creatorcontrib><creatorcontrib>Lauter, Valeria</creatorcontrib><creatorcontrib>Kumar, Rajeev</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Macromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mahalik, Jyoti P</au><au>Dugger, Jason W</au><au>Sides, Scott W</au><au>Sumpter, Bobby G</au><au>Lauter, Valeria</au><au>Kumar, Rajeev</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interpreting Neutron Reflectivity Profiles of Diblock Copolymer Nanocomposite Thin Films Using Hybrid Particle-Field Simulations</atitle><jtitle>Macromolecules</jtitle><addtitle>Macromolecules</addtitle><date>2018-04-24</date><risdate>2018</risdate><volume>51</volume><issue>8</issue><spage>3116</spage><epage>3125</epage><pages>3116-3125</pages><issn>0024-9297</issn><eissn>1520-5835</eissn><abstract>Mixtures of block copolymers and nanoparticles (block copolymer nanocomposites) are known to microphase separate into a plethora of microstructures, depending on the composition, length scale, and nature of interactions among its different constituents. Confining these nanocomposites in thin films yields an even larger array of structures, which are not normally observed in the bulk. In contrast to the bulk, exploring various microstructures in thin films by the experimental route remains a challenging task. In this work, we present a modeling scheme using the hybrid particle-field simulation approach based on a coarse-grained model for representing polymer chains by continuous curves and coupling fictitious dynamics of nanoparticles to the thermodynamic forces. The simulation approach is general enough to predict microphase separation in thin films of any block copolymer nanocomposite with the specific details encoded in the interaction parameters. The approach is benchmarked by comparisons with the depth profiles obtained from the neutron reflectivity experiments for symmetric poly­(deuterated styrene-b-n-butyl methacrylate) copolymers blended with spherical magnetite nanoparticles covered by hydrogenated poly­(styrene) corona. We show that the hybrid particle-field approach is an accurate way to model and extract quantitative information about the physical parameters in the block copolymer nanocomposites. This work benchmarks the application of the hybrid particle-field model to derive the interaction parameters for exploring different microstructures in thin films containing block copolymer nanocomposites.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acs.macromol.8b00180</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0989-6563</orcidid><orcidid>https://orcid.org/0000-0001-6341-0355</orcidid><orcidid>https://orcid.org/0000-0003-4448-4126</orcidid><orcidid>https://orcid.org/0000-0002-1196-0205</orcidid><orcidid>https://orcid.org/0000-0001-9494-3488</orcidid><orcidid>https://orcid.org/0000000344484126</orcidid><orcidid>https://orcid.org/0000000211960205</orcidid><orcidid>https://orcid.org/0000000163410355</orcidid><orcidid>https://orcid.org/0000000309896563</orcidid><orcidid>https://orcid.org/0000000194943488</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0024-9297
ispartof Macromolecules, 2018-04, Vol.51 (8), p.3116-3125
issn 0024-9297
1520-5835
language eng
recordid cdi_osti_scitechconnect_1435257
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects MATERIALS SCIENCE
title Interpreting Neutron Reflectivity Profiles of Diblock Copolymer Nanocomposite Thin Films Using Hybrid Particle-Field Simulations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T18%3A33%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interpreting%20Neutron%20Reflectivity%20Profiles%20of%20Diblock%20Copolymer%20Nanocomposite%20Thin%20Films%20Using%20Hybrid%20Particle-Field%20Simulations&rft.jtitle=Macromolecules&rft.au=Mahalik,%20Jyoti%20P&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States).%20Oak%20Ridge%20Leadership%20Computing%20Facility%20(OLCF)&rft.date=2018-04-24&rft.volume=51&rft.issue=8&rft.spage=3116&rft.epage=3125&rft.pages=3116-3125&rft.issn=0024-9297&rft.eissn=1520-5835&rft_id=info:doi/10.1021/acs.macromol.8b00180&rft_dat=%3Cacs_osti_%3Ea605996829%3C/acs_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a402t-e230298a2d5163d779b026c7f50e3ed7cd7002e265664ab2915d7f1f85c014633%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true