Loading…

In situ neutron diffraction in quantifying deformation behaviors of nano-sized carbide strengthened UFG ferritic steel

The microstructures and mechanical properties of a low-alloy medium-carbon steel with a duplex microstructure composed of nanoscale spheroidized carbides in ultrafine-grained (UFG) ferritic steel are examined. The average grain size of the studied steel is ~ 430 nm, and these grains coexist with num...

Full description

Saved in:
Bibliographic Details
Published in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2018-05, Vol.726 (C), p.298-308
Main Authors: Liang, J.W., Shen, Y.F., Zhang, C.S., Feng, X.W., Wang, H.B., Sun, X.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The microstructures and mechanical properties of a low-alloy medium-carbon steel with a duplex microstructure composed of nanoscale spheroidized carbides in ultrafine-grained (UFG) ferritic steel are examined. The average grain size of the studied steel is ~ 430 nm, and these grains coexist with numerous carbides. Neutron diffraction reveals that the intensity of (011) and (022) peaks for the UFG sample is significantly enhanced, suggesting that the (011)//RD texture is a result of the warm rolling process. The lattice parameter of UFG steel is smaller than that of a martensitic steel (M steel) counterpart, indicating a lower carbon concentration in the lattice. The estimated dislocation densities for M steel and UFG steel are 2.59 × 1014 cm−2 and 1.76 × 1012 cm−2, respectively. The UFG steel reveals a nearly isotropic lattice strain response under initial tension from 0 to 450 MPa, where the lattice strains of the (110), (002), and (112) planes are identical. The increase of lattice strain of the (110) plane becomes smaller than that of the (002) and (112) planes as the stress exceeds 450 MPa, suggesting that the nanosized carbides contribute to the hardening ability by promoting the accumulation of geometrically necessary dislocations around the particles, and the (110) lattice becomes harder compared to the other two planes.
ISSN:0921-5093
1873-4936
DOI:10.1016/j.msea.2018.04.094