Loading…

Water‐Restructuring Mutations Can Reverse the Thermodynamic Signature of Ligand Binding to Human Carbonic Anhydrase

This study uses mutants of human carbonic anhydrase (HCAII) to examine how changes in the organization of water within a binding pocket can alter the thermodynamics of protein–ligand association. Results from calorimetric, crystallographic, and theoretical analyses suggest that most mutations streng...

Full description

Saved in:
Bibliographic Details
Published in:Angewandte Chemie (International ed.) 2017-03, Vol.56 (14), p.3833-3837
Main Authors: Fox, Jerome M., Kang, Kyungtae, Sastry, Madhavi, Sherman, Woody, Sankaran, Banumathi, Zwart, Peter H., Whitesides, George M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4779-6dec21594a2b925233411e4e59f86e70fcf830e37bbb14e180a896daf619fc803
cites cdi_FETCH-LOGICAL-c4779-6dec21594a2b925233411e4e59f86e70fcf830e37bbb14e180a896daf619fc803
container_end_page 3837
container_issue 14
container_start_page 3833
container_title Angewandte Chemie (International ed.)
container_volume 56
creator Fox, Jerome M.
Kang, Kyungtae
Sastry, Madhavi
Sherman, Woody
Sankaran, Banumathi
Zwart, Peter H.
Whitesides, George M.
description This study uses mutants of human carbonic anhydrase (HCAII) to examine how changes in the organization of water within a binding pocket can alter the thermodynamics of protein–ligand association. Results from calorimetric, crystallographic, and theoretical analyses suggest that most mutations strengthen networks of water‐mediated hydrogen bonds and reduce binding affinity by increasing the enthalpic cost and, to a lesser extent, the entropic benefit of rearranging those networks during binding. The organization of water within a binding pocket can thus determine whether the hydrophobic interactions in which it engages are enthalpy‐driven or entropy‐driven. Our findings highlight a possible asymmetry in protein–ligand association by suggesting that, within the confines of the binding pocket of HCAII, binding events associated with enthalpically favorable rearrangements of water are stronger than those associated with entropically favorable ones. Water in a binding pocket: The effect of water‐restructuring mutations on the thermodynamics of protein–ligand association is studied. Empirical and theoretical results suggest that mutations, by changing the thermodynamic properties of water in the binding pocket of human carbonic anhydrase II, can reverse the thermodynamic signature, and significantly alter the strength, of ligand binding.
doi_str_mv 10.1002/anie.201609409
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1436332</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1873723182</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4779-6dec21594a2b925233411e4e59f86e70fcf830e37bbb14e180a896daf619fc803</originalsourceid><addsrcrecordid>eNqF0U9vFCEYBnBiNLZWrx4N0Usvs_JnZoDjumltk1WTWuORMMw7uzQ70AKj2Zsfwc_oJ5HJ1pp4kQscfu8T4EHoJSULSgh7a7yDBSO0Jaom6hE6pg2jFReCPy7nmvNKyIYeoWcp3RQvJWmfoiMmWcNkTY_R9NVkiL9-_LyClONk8xSd3-APUzbZBZ_wynh8Bd8gJsB5C_h6C3EM_d6b0Vn82W28KTOAw4DXbmN8j985388ZOeCLaSzjKxO74Ite-u2-jybBc_RkMLsEL-73E_Tl_Ox6dVGtP72_XC3Xla2FUFXbg2W0UbVhnSo35rymFGpo1CBbEGSwg-QEuOi6jtZAJTFStb0ZWqoGKwk_Qa8PuSFlp5N1GezWBu_BZl1-p-WcFXR6QLcx3E3lG_TokoXdzngIU9JUCi4Yp3Kmb_6hN2GKvjyhKCXKautZLQ7KxpBShEHfRjeauNeU6Lk1PbemH1orA6_uY6duhP6B_6mpAHUA390O9v-J08uPl2d_w38DhnmkdQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1897777642</pqid></control><display><type>article</type><title>Water‐Restructuring Mutations Can Reverse the Thermodynamic Signature of Ligand Binding to Human Carbonic Anhydrase</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Fox, Jerome M. ; Kang, Kyungtae ; Sastry, Madhavi ; Sherman, Woody ; Sankaran, Banumathi ; Zwart, Peter H. ; Whitesides, George M.</creator><creatorcontrib>Fox, Jerome M. ; Kang, Kyungtae ; Sastry, Madhavi ; Sherman, Woody ; Sankaran, Banumathi ; Zwart, Peter H. ; Whitesides, George M. ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><description>This study uses mutants of human carbonic anhydrase (HCAII) to examine how changes in the organization of water within a binding pocket can alter the thermodynamics of protein–ligand association. Results from calorimetric, crystallographic, and theoretical analyses suggest that most mutations strengthen networks of water‐mediated hydrogen bonds and reduce binding affinity by increasing the enthalpic cost and, to a lesser extent, the entropic benefit of rearranging those networks during binding. The organization of water within a binding pocket can thus determine whether the hydrophobic interactions in which it engages are enthalpy‐driven or entropy‐driven. Our findings highlight a possible asymmetry in protein–ligand association by suggesting that, within the confines of the binding pocket of HCAII, binding events associated with enthalpically favorable rearrangements of water are stronger than those associated with entropically favorable ones. Water in a binding pocket: The effect of water‐restructuring mutations on the thermodynamics of protein–ligand association is studied. Empirical and theoretical results suggest that mutations, by changing the thermodynamic properties of water in the binding pocket of human carbonic anhydrase II, can reverse the thermodynamic signature, and significantly alter the strength, of ligand binding.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.201609409</identifier><identifier>PMID: 28252841</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>BASIC BIOLOGICAL SCIENCES ; Binding ; Binding Sites ; Bonding strength ; Carbonic anhydrase ; Carbonic Anhydrase II - chemistry ; Carbonic Anhydrase II - metabolism ; Carbonic anhydrases ; Crystallography ; Enthalpy ; enthalpy–entropy compensation ; Entropy ; Humans ; Hydrogen bonding ; Hydrogen bonds ; Hydrophobic and Hydrophilic Interactions ; hydrophobic effects ; Hydrophobicity ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Ligands ; Models, Molecular ; Molecular Conformation ; Mutants ; Mutation ; mutational analysis ; Proteins ; protein–ligand interactions ; Thermodynamics ; Water - chemistry ; Water - metabolism</subject><ispartof>Angewandte Chemie (International ed.), 2017-03, Vol.56 (14), p.3833-3837</ispartof><rights>2017 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2017 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2017 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4779-6dec21594a2b925233411e4e59f86e70fcf830e37bbb14e180a896daf619fc803</citedby><cites>FETCH-LOGICAL-c4779-6dec21594a2b925233411e4e59f86e70fcf830e37bbb14e180a896daf619fc803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27898,27899</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28252841$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1436332$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Fox, Jerome M.</creatorcontrib><creatorcontrib>Kang, Kyungtae</creatorcontrib><creatorcontrib>Sastry, Madhavi</creatorcontrib><creatorcontrib>Sherman, Woody</creatorcontrib><creatorcontrib>Sankaran, Banumathi</creatorcontrib><creatorcontrib>Zwart, Peter H.</creatorcontrib><creatorcontrib>Whitesides, George M.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Water‐Restructuring Mutations Can Reverse the Thermodynamic Signature of Ligand Binding to Human Carbonic Anhydrase</title><title>Angewandte Chemie (International ed.)</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>This study uses mutants of human carbonic anhydrase (HCAII) to examine how changes in the organization of water within a binding pocket can alter the thermodynamics of protein–ligand association. Results from calorimetric, crystallographic, and theoretical analyses suggest that most mutations strengthen networks of water‐mediated hydrogen bonds and reduce binding affinity by increasing the enthalpic cost and, to a lesser extent, the entropic benefit of rearranging those networks during binding. The organization of water within a binding pocket can thus determine whether the hydrophobic interactions in which it engages are enthalpy‐driven or entropy‐driven. Our findings highlight a possible asymmetry in protein–ligand association by suggesting that, within the confines of the binding pocket of HCAII, binding events associated with enthalpically favorable rearrangements of water are stronger than those associated with entropically favorable ones. Water in a binding pocket: The effect of water‐restructuring mutations on the thermodynamics of protein–ligand association is studied. Empirical and theoretical results suggest that mutations, by changing the thermodynamic properties of water in the binding pocket of human carbonic anhydrase II, can reverse the thermodynamic signature, and significantly alter the strength, of ligand binding.</description><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Binding</subject><subject>Binding Sites</subject><subject>Bonding strength</subject><subject>Carbonic anhydrase</subject><subject>Carbonic Anhydrase II - chemistry</subject><subject>Carbonic Anhydrase II - metabolism</subject><subject>Carbonic anhydrases</subject><subject>Crystallography</subject><subject>Enthalpy</subject><subject>enthalpy–entropy compensation</subject><subject>Entropy</subject><subject>Humans</subject><subject>Hydrogen bonding</subject><subject>Hydrogen bonds</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>hydrophobic effects</subject><subject>Hydrophobicity</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Ligands</subject><subject>Models, Molecular</subject><subject>Molecular Conformation</subject><subject>Mutants</subject><subject>Mutation</subject><subject>mutational analysis</subject><subject>Proteins</subject><subject>protein–ligand interactions</subject><subject>Thermodynamics</subject><subject>Water - chemistry</subject><subject>Water - metabolism</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqF0U9vFCEYBnBiNLZWrx4N0Usvs_JnZoDjumltk1WTWuORMMw7uzQ70AKj2Zsfwc_oJ5HJ1pp4kQscfu8T4EHoJSULSgh7a7yDBSO0Jaom6hE6pg2jFReCPy7nmvNKyIYeoWcp3RQvJWmfoiMmWcNkTY_R9NVkiL9-_LyClONk8xSd3-APUzbZBZ_wynh8Bd8gJsB5C_h6C3EM_d6b0Vn82W28KTOAw4DXbmN8j985388ZOeCLaSzjKxO74Ite-u2-jybBc_RkMLsEL-73E_Tl_Ox6dVGtP72_XC3Xla2FUFXbg2W0UbVhnSo35rymFGpo1CBbEGSwg-QEuOi6jtZAJTFStb0ZWqoGKwk_Qa8PuSFlp5N1GezWBu_BZl1-p-WcFXR6QLcx3E3lG_TokoXdzngIU9JUCi4Yp3Kmb_6hN2GKvjyhKCXKautZLQ7KxpBShEHfRjeauNeU6Lk1PbemH1orA6_uY6duhP6B_6mpAHUA390O9v-J08uPl2d_w38DhnmkdQ</recordid><startdate>20170327</startdate><enddate>20170327</enddate><creator>Fox, Jerome M.</creator><creator>Kang, Kyungtae</creator><creator>Sastry, Madhavi</creator><creator>Sherman, Woody</creator><creator>Sankaran, Banumathi</creator><creator>Zwart, Peter H.</creator><creator>Whitesides, George M.</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20170327</creationdate><title>Water‐Restructuring Mutations Can Reverse the Thermodynamic Signature of Ligand Binding to Human Carbonic Anhydrase</title><author>Fox, Jerome M. ; Kang, Kyungtae ; Sastry, Madhavi ; Sherman, Woody ; Sankaran, Banumathi ; Zwart, Peter H. ; Whitesides, George M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4779-6dec21594a2b925233411e4e59f86e70fcf830e37bbb14e180a896daf619fc803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Binding</topic><topic>Binding Sites</topic><topic>Bonding strength</topic><topic>Carbonic anhydrase</topic><topic>Carbonic Anhydrase II - chemistry</topic><topic>Carbonic Anhydrase II - metabolism</topic><topic>Carbonic anhydrases</topic><topic>Crystallography</topic><topic>Enthalpy</topic><topic>enthalpy–entropy compensation</topic><topic>Entropy</topic><topic>Humans</topic><topic>Hydrogen bonding</topic><topic>Hydrogen bonds</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>hydrophobic effects</topic><topic>Hydrophobicity</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Ligands</topic><topic>Models, Molecular</topic><topic>Molecular Conformation</topic><topic>Mutants</topic><topic>Mutation</topic><topic>mutational analysis</topic><topic>Proteins</topic><topic>protein–ligand interactions</topic><topic>Thermodynamics</topic><topic>Water - chemistry</topic><topic>Water - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fox, Jerome M.</creatorcontrib><creatorcontrib>Kang, Kyungtae</creatorcontrib><creatorcontrib>Sastry, Madhavi</creatorcontrib><creatorcontrib>Sherman, Woody</creatorcontrib><creatorcontrib>Sankaran, Banumathi</creatorcontrib><creatorcontrib>Zwart, Peter H.</creatorcontrib><creatorcontrib>Whitesides, George M.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Angewandte Chemie (International ed.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fox, Jerome M.</au><au>Kang, Kyungtae</au><au>Sastry, Madhavi</au><au>Sherman, Woody</au><au>Sankaran, Banumathi</au><au>Zwart, Peter H.</au><au>Whitesides, George M.</au><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Water‐Restructuring Mutations Can Reverse the Thermodynamic Signature of Ligand Binding to Human Carbonic Anhydrase</atitle><jtitle>Angewandte Chemie (International ed.)</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2017-03-27</date><risdate>2017</risdate><volume>56</volume><issue>14</issue><spage>3833</spage><epage>3837</epage><pages>3833-3837</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>This study uses mutants of human carbonic anhydrase (HCAII) to examine how changes in the organization of water within a binding pocket can alter the thermodynamics of protein–ligand association. Results from calorimetric, crystallographic, and theoretical analyses suggest that most mutations strengthen networks of water‐mediated hydrogen bonds and reduce binding affinity by increasing the enthalpic cost and, to a lesser extent, the entropic benefit of rearranging those networks during binding. The organization of water within a binding pocket can thus determine whether the hydrophobic interactions in which it engages are enthalpy‐driven or entropy‐driven. Our findings highlight a possible asymmetry in protein–ligand association by suggesting that, within the confines of the binding pocket of HCAII, binding events associated with enthalpically favorable rearrangements of water are stronger than those associated with entropically favorable ones. Water in a binding pocket: The effect of water‐restructuring mutations on the thermodynamics of protein–ligand association is studied. Empirical and theoretical results suggest that mutations, by changing the thermodynamic properties of water in the binding pocket of human carbonic anhydrase II, can reverse the thermodynamic signature, and significantly alter the strength, of ligand binding.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28252841</pmid><doi>10.1002/anie.201609409</doi><tpages>5</tpages><edition>International ed. in English</edition><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie (International ed.), 2017-03, Vol.56 (14), p.3833-3837
issn 1433-7851
1521-3773
language eng
recordid cdi_osti_scitechconnect_1436332
source Wiley-Blackwell Read & Publish Collection
subjects BASIC BIOLOGICAL SCIENCES
Binding
Binding Sites
Bonding strength
Carbonic anhydrase
Carbonic Anhydrase II - chemistry
Carbonic Anhydrase II - metabolism
Carbonic anhydrases
Crystallography
Enthalpy
enthalpy–entropy compensation
Entropy
Humans
Hydrogen bonding
Hydrogen bonds
Hydrophobic and Hydrophilic Interactions
hydrophobic effects
Hydrophobicity
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Ligands
Models, Molecular
Molecular Conformation
Mutants
Mutation
mutational analysis
Proteins
protein–ligand interactions
Thermodynamics
Water - chemistry
Water - metabolism
title Water‐Restructuring Mutations Can Reverse the Thermodynamic Signature of Ligand Binding to Human Carbonic Anhydrase
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-27T00%3A31%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Water%E2%80%90Restructuring%20Mutations%20Can%20Reverse%20the%20Thermodynamic%20Signature%20of%20Ligand%20Binding%20to%20Human%20Carbonic%20Anhydrase&rft.jtitle=Angewandte%20Chemie%20(International%20ed.)&rft.au=Fox,%20Jerome%20M.&rft.aucorp=Lawrence%20Berkeley%20National%20Laboratory%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2017-03-27&rft.volume=56&rft.issue=14&rft.spage=3833&rft.epage=3837&rft.pages=3833-3837&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.201609409&rft_dat=%3Cproquest_osti_%3E1873723182%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4779-6dec21594a2b925233411e4e59f86e70fcf830e37bbb14e180a896daf619fc803%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1897777642&rft_id=info:pmid/28252841&rfr_iscdi=true