Loading…
Water‐Restructuring Mutations Can Reverse the Thermodynamic Signature of Ligand Binding to Human Carbonic Anhydrase
This study uses mutants of human carbonic anhydrase (HCAII) to examine how changes in the organization of water within a binding pocket can alter the thermodynamics of protein–ligand association. Results from calorimetric, crystallographic, and theoretical analyses suggest that most mutations streng...
Saved in:
Published in: | Angewandte Chemie (International ed.) 2017-03, Vol.56 (14), p.3833-3837 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4779-6dec21594a2b925233411e4e59f86e70fcf830e37bbb14e180a896daf619fc803 |
---|---|
cites | cdi_FETCH-LOGICAL-c4779-6dec21594a2b925233411e4e59f86e70fcf830e37bbb14e180a896daf619fc803 |
container_end_page | 3837 |
container_issue | 14 |
container_start_page | 3833 |
container_title | Angewandte Chemie (International ed.) |
container_volume | 56 |
creator | Fox, Jerome M. Kang, Kyungtae Sastry, Madhavi Sherman, Woody Sankaran, Banumathi Zwart, Peter H. Whitesides, George M. |
description | This study uses mutants of human carbonic anhydrase (HCAII) to examine how changes in the organization of water within a binding pocket can alter the thermodynamics of protein–ligand association. Results from calorimetric, crystallographic, and theoretical analyses suggest that most mutations strengthen networks of water‐mediated hydrogen bonds and reduce binding affinity by increasing the enthalpic cost and, to a lesser extent, the entropic benefit of rearranging those networks during binding. The organization of water within a binding pocket can thus determine whether the hydrophobic interactions in which it engages are enthalpy‐driven or entropy‐driven. Our findings highlight a possible asymmetry in protein–ligand association by suggesting that, within the confines of the binding pocket of HCAII, binding events associated with enthalpically favorable rearrangements of water are stronger than those associated with entropically favorable ones.
Water in a binding pocket: The effect of water‐restructuring mutations on the thermodynamics of protein–ligand association is studied. Empirical and theoretical results suggest that mutations, by changing the thermodynamic properties of water in the binding pocket of human carbonic anhydrase II, can reverse the thermodynamic signature, and significantly alter the strength, of ligand binding. |
doi_str_mv | 10.1002/anie.201609409 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1436332</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1873723182</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4779-6dec21594a2b925233411e4e59f86e70fcf830e37bbb14e180a896daf619fc803</originalsourceid><addsrcrecordid>eNqF0U9vFCEYBnBiNLZWrx4N0Usvs_JnZoDjumltk1WTWuORMMw7uzQ70AKj2Zsfwc_oJ5HJ1pp4kQscfu8T4EHoJSULSgh7a7yDBSO0Jaom6hE6pg2jFReCPy7nmvNKyIYeoWcp3RQvJWmfoiMmWcNkTY_R9NVkiL9-_LyClONk8xSd3-APUzbZBZ_wynh8Bd8gJsB5C_h6C3EM_d6b0Vn82W28KTOAw4DXbmN8j985388ZOeCLaSzjKxO74Ite-u2-jybBc_RkMLsEL-73E_Tl_Ox6dVGtP72_XC3Xla2FUFXbg2W0UbVhnSo35rymFGpo1CBbEGSwg-QEuOi6jtZAJTFStb0ZWqoGKwk_Qa8PuSFlp5N1GezWBu_BZl1-p-WcFXR6QLcx3E3lG_TokoXdzngIU9JUCi4Yp3Kmb_6hN2GKvjyhKCXKautZLQ7KxpBShEHfRjeauNeU6Lk1PbemH1orA6_uY6duhP6B_6mpAHUA390O9v-J08uPl2d_w38DhnmkdQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1897777642</pqid></control><display><type>article</type><title>Water‐Restructuring Mutations Can Reverse the Thermodynamic Signature of Ligand Binding to Human Carbonic Anhydrase</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Fox, Jerome M. ; Kang, Kyungtae ; Sastry, Madhavi ; Sherman, Woody ; Sankaran, Banumathi ; Zwart, Peter H. ; Whitesides, George M.</creator><creatorcontrib>Fox, Jerome M. ; Kang, Kyungtae ; Sastry, Madhavi ; Sherman, Woody ; Sankaran, Banumathi ; Zwart, Peter H. ; Whitesides, George M. ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><description>This study uses mutants of human carbonic anhydrase (HCAII) to examine how changes in the organization of water within a binding pocket can alter the thermodynamics of protein–ligand association. Results from calorimetric, crystallographic, and theoretical analyses suggest that most mutations strengthen networks of water‐mediated hydrogen bonds and reduce binding affinity by increasing the enthalpic cost and, to a lesser extent, the entropic benefit of rearranging those networks during binding. The organization of water within a binding pocket can thus determine whether the hydrophobic interactions in which it engages are enthalpy‐driven or entropy‐driven. Our findings highlight a possible asymmetry in protein–ligand association by suggesting that, within the confines of the binding pocket of HCAII, binding events associated with enthalpically favorable rearrangements of water are stronger than those associated with entropically favorable ones.
Water in a binding pocket: The effect of water‐restructuring mutations on the thermodynamics of protein–ligand association is studied. Empirical and theoretical results suggest that mutations, by changing the thermodynamic properties of water in the binding pocket of human carbonic anhydrase II, can reverse the thermodynamic signature, and significantly alter the strength, of ligand binding.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.201609409</identifier><identifier>PMID: 28252841</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>BASIC BIOLOGICAL SCIENCES ; Binding ; Binding Sites ; Bonding strength ; Carbonic anhydrase ; Carbonic Anhydrase II - chemistry ; Carbonic Anhydrase II - metabolism ; Carbonic anhydrases ; Crystallography ; Enthalpy ; enthalpy–entropy compensation ; Entropy ; Humans ; Hydrogen bonding ; Hydrogen bonds ; Hydrophobic and Hydrophilic Interactions ; hydrophobic effects ; Hydrophobicity ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Ligands ; Models, Molecular ; Molecular Conformation ; Mutants ; Mutation ; mutational analysis ; Proteins ; protein–ligand interactions ; Thermodynamics ; Water - chemistry ; Water - metabolism</subject><ispartof>Angewandte Chemie (International ed.), 2017-03, Vol.56 (14), p.3833-3837</ispartof><rights>2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><rights>2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4779-6dec21594a2b925233411e4e59f86e70fcf830e37bbb14e180a896daf619fc803</citedby><cites>FETCH-LOGICAL-c4779-6dec21594a2b925233411e4e59f86e70fcf830e37bbb14e180a896daf619fc803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27898,27899</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28252841$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1436332$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Fox, Jerome M.</creatorcontrib><creatorcontrib>Kang, Kyungtae</creatorcontrib><creatorcontrib>Sastry, Madhavi</creatorcontrib><creatorcontrib>Sherman, Woody</creatorcontrib><creatorcontrib>Sankaran, Banumathi</creatorcontrib><creatorcontrib>Zwart, Peter H.</creatorcontrib><creatorcontrib>Whitesides, George M.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Water‐Restructuring Mutations Can Reverse the Thermodynamic Signature of Ligand Binding to Human Carbonic Anhydrase</title><title>Angewandte Chemie (International ed.)</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>This study uses mutants of human carbonic anhydrase (HCAII) to examine how changes in the organization of water within a binding pocket can alter the thermodynamics of protein–ligand association. Results from calorimetric, crystallographic, and theoretical analyses suggest that most mutations strengthen networks of water‐mediated hydrogen bonds and reduce binding affinity by increasing the enthalpic cost and, to a lesser extent, the entropic benefit of rearranging those networks during binding. The organization of water within a binding pocket can thus determine whether the hydrophobic interactions in which it engages are enthalpy‐driven or entropy‐driven. Our findings highlight a possible asymmetry in protein–ligand association by suggesting that, within the confines of the binding pocket of HCAII, binding events associated with enthalpically favorable rearrangements of water are stronger than those associated with entropically favorable ones.
Water in a binding pocket: The effect of water‐restructuring mutations on the thermodynamics of protein–ligand association is studied. Empirical and theoretical results suggest that mutations, by changing the thermodynamic properties of water in the binding pocket of human carbonic anhydrase II, can reverse the thermodynamic signature, and significantly alter the strength, of ligand binding.</description><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Binding</subject><subject>Binding Sites</subject><subject>Bonding strength</subject><subject>Carbonic anhydrase</subject><subject>Carbonic Anhydrase II - chemistry</subject><subject>Carbonic Anhydrase II - metabolism</subject><subject>Carbonic anhydrases</subject><subject>Crystallography</subject><subject>Enthalpy</subject><subject>enthalpy–entropy compensation</subject><subject>Entropy</subject><subject>Humans</subject><subject>Hydrogen bonding</subject><subject>Hydrogen bonds</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>hydrophobic effects</subject><subject>Hydrophobicity</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Ligands</subject><subject>Models, Molecular</subject><subject>Molecular Conformation</subject><subject>Mutants</subject><subject>Mutation</subject><subject>mutational analysis</subject><subject>Proteins</subject><subject>protein–ligand interactions</subject><subject>Thermodynamics</subject><subject>Water - chemistry</subject><subject>Water - metabolism</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqF0U9vFCEYBnBiNLZWrx4N0Usvs_JnZoDjumltk1WTWuORMMw7uzQ70AKj2Zsfwc_oJ5HJ1pp4kQscfu8T4EHoJSULSgh7a7yDBSO0Jaom6hE6pg2jFReCPy7nmvNKyIYeoWcp3RQvJWmfoiMmWcNkTY_R9NVkiL9-_LyClONk8xSd3-APUzbZBZ_wynh8Bd8gJsB5C_h6C3EM_d6b0Vn82W28KTOAw4DXbmN8j985388ZOeCLaSzjKxO74Ite-u2-jybBc_RkMLsEL-73E_Tl_Ox6dVGtP72_XC3Xla2FUFXbg2W0UbVhnSo35rymFGpo1CBbEGSwg-QEuOi6jtZAJTFStb0ZWqoGKwk_Qa8PuSFlp5N1GezWBu_BZl1-p-WcFXR6QLcx3E3lG_TokoXdzngIU9JUCi4Yp3Kmb_6hN2GKvjyhKCXKautZLQ7KxpBShEHfRjeauNeU6Lk1PbemH1orA6_uY6duhP6B_6mpAHUA390O9v-J08uPl2d_w38DhnmkdQ</recordid><startdate>20170327</startdate><enddate>20170327</enddate><creator>Fox, Jerome M.</creator><creator>Kang, Kyungtae</creator><creator>Sastry, Madhavi</creator><creator>Sherman, Woody</creator><creator>Sankaran, Banumathi</creator><creator>Zwart, Peter H.</creator><creator>Whitesides, George M.</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20170327</creationdate><title>Water‐Restructuring Mutations Can Reverse the Thermodynamic Signature of Ligand Binding to Human Carbonic Anhydrase</title><author>Fox, Jerome M. ; Kang, Kyungtae ; Sastry, Madhavi ; Sherman, Woody ; Sankaran, Banumathi ; Zwart, Peter H. ; Whitesides, George M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4779-6dec21594a2b925233411e4e59f86e70fcf830e37bbb14e180a896daf619fc803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Binding</topic><topic>Binding Sites</topic><topic>Bonding strength</topic><topic>Carbonic anhydrase</topic><topic>Carbonic Anhydrase II - chemistry</topic><topic>Carbonic Anhydrase II - metabolism</topic><topic>Carbonic anhydrases</topic><topic>Crystallography</topic><topic>Enthalpy</topic><topic>enthalpy–entropy compensation</topic><topic>Entropy</topic><topic>Humans</topic><topic>Hydrogen bonding</topic><topic>Hydrogen bonds</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>hydrophobic effects</topic><topic>Hydrophobicity</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Ligands</topic><topic>Models, Molecular</topic><topic>Molecular Conformation</topic><topic>Mutants</topic><topic>Mutation</topic><topic>mutational analysis</topic><topic>Proteins</topic><topic>protein–ligand interactions</topic><topic>Thermodynamics</topic><topic>Water - chemistry</topic><topic>Water - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fox, Jerome M.</creatorcontrib><creatorcontrib>Kang, Kyungtae</creatorcontrib><creatorcontrib>Sastry, Madhavi</creatorcontrib><creatorcontrib>Sherman, Woody</creatorcontrib><creatorcontrib>Sankaran, Banumathi</creatorcontrib><creatorcontrib>Zwart, Peter H.</creatorcontrib><creatorcontrib>Whitesides, George M.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Angewandte Chemie (International ed.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fox, Jerome M.</au><au>Kang, Kyungtae</au><au>Sastry, Madhavi</au><au>Sherman, Woody</au><au>Sankaran, Banumathi</au><au>Zwart, Peter H.</au><au>Whitesides, George M.</au><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Water‐Restructuring Mutations Can Reverse the Thermodynamic Signature of Ligand Binding to Human Carbonic Anhydrase</atitle><jtitle>Angewandte Chemie (International ed.)</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2017-03-27</date><risdate>2017</risdate><volume>56</volume><issue>14</issue><spage>3833</spage><epage>3837</epage><pages>3833-3837</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>This study uses mutants of human carbonic anhydrase (HCAII) to examine how changes in the organization of water within a binding pocket can alter the thermodynamics of protein–ligand association. Results from calorimetric, crystallographic, and theoretical analyses suggest that most mutations strengthen networks of water‐mediated hydrogen bonds and reduce binding affinity by increasing the enthalpic cost and, to a lesser extent, the entropic benefit of rearranging those networks during binding. The organization of water within a binding pocket can thus determine whether the hydrophobic interactions in which it engages are enthalpy‐driven or entropy‐driven. Our findings highlight a possible asymmetry in protein–ligand association by suggesting that, within the confines of the binding pocket of HCAII, binding events associated with enthalpically favorable rearrangements of water are stronger than those associated with entropically favorable ones.
Water in a binding pocket: The effect of water‐restructuring mutations on the thermodynamics of protein–ligand association is studied. Empirical and theoretical results suggest that mutations, by changing the thermodynamic properties of water in the binding pocket of human carbonic anhydrase II, can reverse the thermodynamic signature, and significantly alter the strength, of ligand binding.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28252841</pmid><doi>10.1002/anie.201609409</doi><tpages>5</tpages><edition>International ed. in English</edition><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie (International ed.), 2017-03, Vol.56 (14), p.3833-3837 |
issn | 1433-7851 1521-3773 |
language | eng |
recordid | cdi_osti_scitechconnect_1436332 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | BASIC BIOLOGICAL SCIENCES Binding Binding Sites Bonding strength Carbonic anhydrase Carbonic Anhydrase II - chemistry Carbonic Anhydrase II - metabolism Carbonic anhydrases Crystallography Enthalpy enthalpy–entropy compensation Entropy Humans Hydrogen bonding Hydrogen bonds Hydrophobic and Hydrophilic Interactions hydrophobic effects Hydrophobicity INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY Ligands Models, Molecular Molecular Conformation Mutants Mutation mutational analysis Proteins protein–ligand interactions Thermodynamics Water - chemistry Water - metabolism |
title | Water‐Restructuring Mutations Can Reverse the Thermodynamic Signature of Ligand Binding to Human Carbonic Anhydrase |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-27T00%3A31%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Water%E2%80%90Restructuring%20Mutations%20Can%20Reverse%20the%20Thermodynamic%20Signature%20of%20Ligand%20Binding%20to%20Human%20Carbonic%20Anhydrase&rft.jtitle=Angewandte%20Chemie%20(International%20ed.)&rft.au=Fox,%20Jerome%20M.&rft.aucorp=Lawrence%20Berkeley%20National%20Laboratory%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2017-03-27&rft.volume=56&rft.issue=14&rft.spage=3833&rft.epage=3837&rft.pages=3833-3837&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.201609409&rft_dat=%3Cproquest_osti_%3E1873723182%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4779-6dec21594a2b925233411e4e59f86e70fcf830e37bbb14e180a896daf619fc803%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1897777642&rft_id=info:pmid/28252841&rfr_iscdi=true |