Loading…

Overcoming the Photovoltage Plateau in Large Bandgap Perovskite Photovoltaics

Development of large bandgap (1.80–1.85 eV E g) perovskite is crucial for perovskite–perovskite tandem solar cells. However, the performance of 1.80–1.85 eV E g perovskite solar cells (PVKSCs) are significantly lagging their counterparts in the 1.60–1.75 eV E g range. This is because the photovoltag...

Full description

Saved in:
Bibliographic Details
Published in:Nano letters 2018-06, Vol.18 (6), p.3985-3993
Main Authors: Rajagopal, Adharsh, Stoddard, Ryan J, Jo, Sae Byeok, Hillhouse, Hugh W, Jen, Alex K.-Y
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a460t-ee3337390fefa665caf535e6a820b2a27960692ebe83245a956a86a8b13d9b923
cites cdi_FETCH-LOGICAL-a460t-ee3337390fefa665caf535e6a820b2a27960692ebe83245a956a86a8b13d9b923
container_end_page 3993
container_issue 6
container_start_page 3985
container_title Nano letters
container_volume 18
creator Rajagopal, Adharsh
Stoddard, Ryan J
Jo, Sae Byeok
Hillhouse, Hugh W
Jen, Alex K.-Y
description Development of large bandgap (1.80–1.85 eV E g) perovskite is crucial for perovskite–perovskite tandem solar cells. However, the performance of 1.80–1.85 eV E g perovskite solar cells (PVKSCs) are significantly lagging their counterparts in the 1.60–1.75 eV E g range. This is because the photovoltage (V oc) does not proportionally increase with E g due to lower optoelectronic quality of conventional (MA,FA,Cs)­Pb­(I,Br)3 and results in a photovoltage plateau (V oc limited to 80% of the theoretical limit for ∼1.8 eV E g). Here, we incorporate phenylethylammonium (PEA) in a mixed-halide perovskite composition to solve the inherent material-level challenges in 1.80–1.85 eV E g perovskites. The amount of PEA incorporation governs the topography and optoelectronic properties of resultant films. Detailed structural and spectroscopic characterization reveal the characteristic trends in crystalline size, orientation, and charge carrier recombination dynamics and rationalize the origin of improved material quality with higher luminescence. With careful interface optimization, the improved material characteristics were translated to devices and V oc values of 1.30–1.35 V were achieved, which correspond to 85–87% of the theoretical limit. Using an optimal amount of PEA incorporation to balance the increase in V oc and the decrease in charge collection, a highest power conversion efficiency of 12.2% was realized. Our results clearly overcome the photovoltage plateau in the 1.80–1.85 eV E g range and represent the highest V oc achieved for mixed-halide PVKSCs. This study provides widely translatable insights, an important breakthrough, and a promising platform for next-generation perovskite tandems.
doi_str_mv 10.1021/acs.nanolett.8b01480
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1436489</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2035707068</sourcerecordid><originalsourceid>FETCH-LOGICAL-a460t-ee3337390fefa665caf535e6a820b2a27960692ebe83245a956a86a8b13d9b923</originalsourceid><addsrcrecordid>eNp9kMFqGzEQhkVJaZy0b1DKklMudkfSrnZ1bE3aBFySQ3IWs_KsvelaciWtIW9fGdshp4BgpNH3j8TH2FcOMw6Cf0cbZw6dHyilWdMCLxv4wCa8kjBVWouz131TnrOLGJ8BQMsKPrFzoWspBS8n7M_9joL1m96tirSm4mHtk9_5IeEqHwZMhGPRu2KBITd-oluucFs8UPC7-LdPbwO9jZ_Zxw6HSF-O9ZI9_bp5nN9OF_e_7-Y_FlMsFaQpkZSylho66lCpymJXyYoUNgJagaLWCpQW1FIjRVmhrvJVXi2XS91qIS_Z1WGuj6k30eaP2LX1zpFNhpdSlY3O0PUB2gb_b6SYzKaPloYBHfkxGgGyqqEG1WS0PKA2-BgDdWYb-g2GF8PB7G2bbNucbJuj7Rz7dnxhbDe0fA2d9GYADsA-_uzH4LKV92f-BxPljrM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2035707068</pqid></control><display><type>article</type><title>Overcoming the Photovoltage Plateau in Large Bandgap Perovskite Photovoltaics</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Rajagopal, Adharsh ; Stoddard, Ryan J ; Jo, Sae Byeok ; Hillhouse, Hugh W ; Jen, Alex K.-Y</creator><creatorcontrib>Rajagopal, Adharsh ; Stoddard, Ryan J ; Jo, Sae Byeok ; Hillhouse, Hugh W ; Jen, Alex K.-Y ; Univ. of Washington, Seattle, WA (United States)</creatorcontrib><description>Development of large bandgap (1.80–1.85 eV E g) perovskite is crucial for perovskite–perovskite tandem solar cells. However, the performance of 1.80–1.85 eV E g perovskite solar cells (PVKSCs) are significantly lagging their counterparts in the 1.60–1.75 eV E g range. This is because the photovoltage (V oc) does not proportionally increase with E g due to lower optoelectronic quality of conventional (MA,FA,Cs)­Pb­(I,Br)3 and results in a photovoltage plateau (V oc limited to 80% of the theoretical limit for ∼1.8 eV E g). Here, we incorporate phenylethylammonium (PEA) in a mixed-halide perovskite composition to solve the inherent material-level challenges in 1.80–1.85 eV E g perovskites. The amount of PEA incorporation governs the topography and optoelectronic properties of resultant films. Detailed structural and spectroscopic characterization reveal the characteristic trends in crystalline size, orientation, and charge carrier recombination dynamics and rationalize the origin of improved material quality with higher luminescence. With careful interface optimization, the improved material characteristics were translated to devices and V oc values of 1.30–1.35 V were achieved, which correspond to 85–87% of the theoretical limit. Using an optimal amount of PEA incorporation to balance the increase in V oc and the decrease in charge collection, a highest power conversion efficiency of 12.2% was realized. Our results clearly overcome the photovoltage plateau in the 1.80–1.85 eV E g range and represent the highest V oc achieved for mixed-halide PVKSCs. This study provides widely translatable insights, an important breakthrough, and a promising platform for next-generation perovskite tandems.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.8b01480</identifier><identifier>PMID: 29733214</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>2D−3D perovskite ; charge recombination dynamics ; mixed-halide phase segregation ; open-circuit voltage bottleneck ; optoelectronic quality ; SOLAR ENERGY ; Tandem solar cell</subject><ispartof>Nano letters, 2018-06, Vol.18 (6), p.3985-3993</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a460t-ee3337390fefa665caf535e6a820b2a27960692ebe83245a956a86a8b13d9b923</citedby><cites>FETCH-LOGICAL-a460t-ee3337390fefa665caf535e6a820b2a27960692ebe83245a956a86a8b13d9b923</cites><orcidid>0000-0003-1071-6443 ; 0000-0002-9219-7749 ; 0000-0003-2069-7899 ; 0000-0001-9806-080X ; 0000000320697899 ; 000000019806080X ; 0000000310716443 ; 0000000292197749</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29733214$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1436489$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Rajagopal, Adharsh</creatorcontrib><creatorcontrib>Stoddard, Ryan J</creatorcontrib><creatorcontrib>Jo, Sae Byeok</creatorcontrib><creatorcontrib>Hillhouse, Hugh W</creatorcontrib><creatorcontrib>Jen, Alex K.-Y</creatorcontrib><creatorcontrib>Univ. of Washington, Seattle, WA (United States)</creatorcontrib><title>Overcoming the Photovoltage Plateau in Large Bandgap Perovskite Photovoltaics</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Development of large bandgap (1.80–1.85 eV E g) perovskite is crucial for perovskite–perovskite tandem solar cells. However, the performance of 1.80–1.85 eV E g perovskite solar cells (PVKSCs) are significantly lagging their counterparts in the 1.60–1.75 eV E g range. This is because the photovoltage (V oc) does not proportionally increase with E g due to lower optoelectronic quality of conventional (MA,FA,Cs)­Pb­(I,Br)3 and results in a photovoltage plateau (V oc limited to 80% of the theoretical limit for ∼1.8 eV E g). Here, we incorporate phenylethylammonium (PEA) in a mixed-halide perovskite composition to solve the inherent material-level challenges in 1.80–1.85 eV E g perovskites. The amount of PEA incorporation governs the topography and optoelectronic properties of resultant films. Detailed structural and spectroscopic characterization reveal the characteristic trends in crystalline size, orientation, and charge carrier recombination dynamics and rationalize the origin of improved material quality with higher luminescence. With careful interface optimization, the improved material characteristics were translated to devices and V oc values of 1.30–1.35 V were achieved, which correspond to 85–87% of the theoretical limit. Using an optimal amount of PEA incorporation to balance the increase in V oc and the decrease in charge collection, a highest power conversion efficiency of 12.2% was realized. Our results clearly overcome the photovoltage plateau in the 1.80–1.85 eV E g range and represent the highest V oc achieved for mixed-halide PVKSCs. This study provides widely translatable insights, an important breakthrough, and a promising platform for next-generation perovskite tandems.</description><subject>2D−3D perovskite</subject><subject>charge recombination dynamics</subject><subject>mixed-halide phase segregation</subject><subject>open-circuit voltage bottleneck</subject><subject>optoelectronic quality</subject><subject>SOLAR ENERGY</subject><subject>Tandem solar cell</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kMFqGzEQhkVJaZy0b1DKklMudkfSrnZ1bE3aBFySQ3IWs_KsvelaciWtIW9fGdshp4BgpNH3j8TH2FcOMw6Cf0cbZw6dHyilWdMCLxv4wCa8kjBVWouz131TnrOLGJ8BQMsKPrFzoWspBS8n7M_9joL1m96tirSm4mHtk9_5IeEqHwZMhGPRu2KBITd-oluucFs8UPC7-LdPbwO9jZ_Zxw6HSF-O9ZI9_bp5nN9OF_e_7-Y_FlMsFaQpkZSylho66lCpymJXyYoUNgJagaLWCpQW1FIjRVmhrvJVXi2XS91qIS_Z1WGuj6k30eaP2LX1zpFNhpdSlY3O0PUB2gb_b6SYzKaPloYBHfkxGgGyqqEG1WS0PKA2-BgDdWYb-g2GF8PB7G2bbNucbJuj7Rz7dnxhbDe0fA2d9GYADsA-_uzH4LKV92f-BxPljrM</recordid><startdate>20180613</startdate><enddate>20180613</enddate><creator>Rajagopal, Adharsh</creator><creator>Stoddard, Ryan J</creator><creator>Jo, Sae Byeok</creator><creator>Hillhouse, Hugh W</creator><creator>Jen, Alex K.-Y</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-1071-6443</orcidid><orcidid>https://orcid.org/0000-0002-9219-7749</orcidid><orcidid>https://orcid.org/0000-0003-2069-7899</orcidid><orcidid>https://orcid.org/0000-0001-9806-080X</orcidid><orcidid>https://orcid.org/0000000320697899</orcidid><orcidid>https://orcid.org/000000019806080X</orcidid><orcidid>https://orcid.org/0000000310716443</orcidid><orcidid>https://orcid.org/0000000292197749</orcidid></search><sort><creationdate>20180613</creationdate><title>Overcoming the Photovoltage Plateau in Large Bandgap Perovskite Photovoltaics</title><author>Rajagopal, Adharsh ; Stoddard, Ryan J ; Jo, Sae Byeok ; Hillhouse, Hugh W ; Jen, Alex K.-Y</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a460t-ee3337390fefa665caf535e6a820b2a27960692ebe83245a956a86a8b13d9b923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>2D−3D perovskite</topic><topic>charge recombination dynamics</topic><topic>mixed-halide phase segregation</topic><topic>open-circuit voltage bottleneck</topic><topic>optoelectronic quality</topic><topic>SOLAR ENERGY</topic><topic>Tandem solar cell</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rajagopal, Adharsh</creatorcontrib><creatorcontrib>Stoddard, Ryan J</creatorcontrib><creatorcontrib>Jo, Sae Byeok</creatorcontrib><creatorcontrib>Hillhouse, Hugh W</creatorcontrib><creatorcontrib>Jen, Alex K.-Y</creatorcontrib><creatorcontrib>Univ. of Washington, Seattle, WA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rajagopal, Adharsh</au><au>Stoddard, Ryan J</au><au>Jo, Sae Byeok</au><au>Hillhouse, Hugh W</au><au>Jen, Alex K.-Y</au><aucorp>Univ. of Washington, Seattle, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Overcoming the Photovoltage Plateau in Large Bandgap Perovskite Photovoltaics</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2018-06-13</date><risdate>2018</risdate><volume>18</volume><issue>6</issue><spage>3985</spage><epage>3993</epage><pages>3985-3993</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Development of large bandgap (1.80–1.85 eV E g) perovskite is crucial for perovskite–perovskite tandem solar cells. However, the performance of 1.80–1.85 eV E g perovskite solar cells (PVKSCs) are significantly lagging their counterparts in the 1.60–1.75 eV E g range. This is because the photovoltage (V oc) does not proportionally increase with E g due to lower optoelectronic quality of conventional (MA,FA,Cs)­Pb­(I,Br)3 and results in a photovoltage plateau (V oc limited to 80% of the theoretical limit for ∼1.8 eV E g). Here, we incorporate phenylethylammonium (PEA) in a mixed-halide perovskite composition to solve the inherent material-level challenges in 1.80–1.85 eV E g perovskites. The amount of PEA incorporation governs the topography and optoelectronic properties of resultant films. Detailed structural and spectroscopic characterization reveal the characteristic trends in crystalline size, orientation, and charge carrier recombination dynamics and rationalize the origin of improved material quality with higher luminescence. With careful interface optimization, the improved material characteristics were translated to devices and V oc values of 1.30–1.35 V were achieved, which correspond to 85–87% of the theoretical limit. Using an optimal amount of PEA incorporation to balance the increase in V oc and the decrease in charge collection, a highest power conversion efficiency of 12.2% was realized. Our results clearly overcome the photovoltage plateau in the 1.80–1.85 eV E g range and represent the highest V oc achieved for mixed-halide PVKSCs. This study provides widely translatable insights, an important breakthrough, and a promising platform for next-generation perovskite tandems.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29733214</pmid><doi>10.1021/acs.nanolett.8b01480</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1071-6443</orcidid><orcidid>https://orcid.org/0000-0002-9219-7749</orcidid><orcidid>https://orcid.org/0000-0003-2069-7899</orcidid><orcidid>https://orcid.org/0000-0001-9806-080X</orcidid><orcidid>https://orcid.org/0000000320697899</orcidid><orcidid>https://orcid.org/000000019806080X</orcidid><orcidid>https://orcid.org/0000000310716443</orcidid><orcidid>https://orcid.org/0000000292197749</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2018-06, Vol.18 (6), p.3985-3993
issn 1530-6984
1530-6992
language eng
recordid cdi_osti_scitechconnect_1436489
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects 2D−3D perovskite
charge recombination dynamics
mixed-halide phase segregation
open-circuit voltage bottleneck
optoelectronic quality
SOLAR ENERGY
Tandem solar cell
title Overcoming the Photovoltage Plateau in Large Bandgap Perovskite Photovoltaics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T17%3A40%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Overcoming%20the%20Photovoltage%20Plateau%20in%20Large%20Bandgap%20Perovskite%20Photovoltaics&rft.jtitle=Nano%20letters&rft.au=Rajagopal,%20Adharsh&rft.aucorp=Univ.%20of%20Washington,%20Seattle,%20WA%20(United%20States)&rft.date=2018-06-13&rft.volume=18&rft.issue=6&rft.spage=3985&rft.epage=3993&rft.pages=3985-3993&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.8b01480&rft_dat=%3Cproquest_osti_%3E2035707068%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a460t-ee3337390fefa665caf535e6a820b2a27960692ebe83245a956a86a8b13d9b923%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2035707068&rft_id=info:pmid/29733214&rfr_iscdi=true