Loading…
Overcoming the Photovoltage Plateau in Large Bandgap Perovskite Photovoltaics
Development of large bandgap (1.80–1.85 eV E g) perovskite is crucial for perovskite–perovskite tandem solar cells. However, the performance of 1.80–1.85 eV E g perovskite solar cells (PVKSCs) are significantly lagging their counterparts in the 1.60–1.75 eV E g range. This is because the photovoltag...
Saved in:
Published in: | Nano letters 2018-06, Vol.18 (6), p.3985-3993 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a460t-ee3337390fefa665caf535e6a820b2a27960692ebe83245a956a86a8b13d9b923 |
---|---|
cites | cdi_FETCH-LOGICAL-a460t-ee3337390fefa665caf535e6a820b2a27960692ebe83245a956a86a8b13d9b923 |
container_end_page | 3993 |
container_issue | 6 |
container_start_page | 3985 |
container_title | Nano letters |
container_volume | 18 |
creator | Rajagopal, Adharsh Stoddard, Ryan J Jo, Sae Byeok Hillhouse, Hugh W Jen, Alex K.-Y |
description | Development of large bandgap (1.80–1.85 eV E g) perovskite is crucial for perovskite–perovskite tandem solar cells. However, the performance of 1.80–1.85 eV E g perovskite solar cells (PVKSCs) are significantly lagging their counterparts in the 1.60–1.75 eV E g range. This is because the photovoltage (V oc) does not proportionally increase with E g due to lower optoelectronic quality of conventional (MA,FA,Cs)Pb(I,Br)3 and results in a photovoltage plateau (V oc limited to 80% of the theoretical limit for ∼1.8 eV E g). Here, we incorporate phenylethylammonium (PEA) in a mixed-halide perovskite composition to solve the inherent material-level challenges in 1.80–1.85 eV E g perovskites. The amount of PEA incorporation governs the topography and optoelectronic properties of resultant films. Detailed structural and spectroscopic characterization reveal the characteristic trends in crystalline size, orientation, and charge carrier recombination dynamics and rationalize the origin of improved material quality with higher luminescence. With careful interface optimization, the improved material characteristics were translated to devices and V oc values of 1.30–1.35 V were achieved, which correspond to 85–87% of the theoretical limit. Using an optimal amount of PEA incorporation to balance the increase in V oc and the decrease in charge collection, a highest power conversion efficiency of 12.2% was realized. Our results clearly overcome the photovoltage plateau in the 1.80–1.85 eV E g range and represent the highest V oc achieved for mixed-halide PVKSCs. This study provides widely translatable insights, an important breakthrough, and a promising platform for next-generation perovskite tandems. |
doi_str_mv | 10.1021/acs.nanolett.8b01480 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1436489</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2035707068</sourcerecordid><originalsourceid>FETCH-LOGICAL-a460t-ee3337390fefa665caf535e6a820b2a27960692ebe83245a956a86a8b13d9b923</originalsourceid><addsrcrecordid>eNp9kMFqGzEQhkVJaZy0b1DKklMudkfSrnZ1bE3aBFySQ3IWs_KsvelaciWtIW9fGdshp4BgpNH3j8TH2FcOMw6Cf0cbZw6dHyilWdMCLxv4wCa8kjBVWouz131TnrOLGJ8BQMsKPrFzoWspBS8n7M_9joL1m96tirSm4mHtk9_5IeEqHwZMhGPRu2KBITd-oluucFs8UPC7-LdPbwO9jZ_Zxw6HSF-O9ZI9_bp5nN9OF_e_7-Y_FlMsFaQpkZSylho66lCpymJXyYoUNgJagaLWCpQW1FIjRVmhrvJVXi2XS91qIS_Z1WGuj6k30eaP2LX1zpFNhpdSlY3O0PUB2gb_b6SYzKaPloYBHfkxGgGyqqEG1WS0PKA2-BgDdWYb-g2GF8PB7G2bbNucbJuj7Rz7dnxhbDe0fA2d9GYADsA-_uzH4LKV92f-BxPljrM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2035707068</pqid></control><display><type>article</type><title>Overcoming the Photovoltage Plateau in Large Bandgap Perovskite Photovoltaics</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Rajagopal, Adharsh ; Stoddard, Ryan J ; Jo, Sae Byeok ; Hillhouse, Hugh W ; Jen, Alex K.-Y</creator><creatorcontrib>Rajagopal, Adharsh ; Stoddard, Ryan J ; Jo, Sae Byeok ; Hillhouse, Hugh W ; Jen, Alex K.-Y ; Univ. of Washington, Seattle, WA (United States)</creatorcontrib><description>Development of large bandgap (1.80–1.85 eV E g) perovskite is crucial for perovskite–perovskite tandem solar cells. However, the performance of 1.80–1.85 eV E g perovskite solar cells (PVKSCs) are significantly lagging their counterparts in the 1.60–1.75 eV E g range. This is because the photovoltage (V oc) does not proportionally increase with E g due to lower optoelectronic quality of conventional (MA,FA,Cs)Pb(I,Br)3 and results in a photovoltage plateau (V oc limited to 80% of the theoretical limit for ∼1.8 eV E g). Here, we incorporate phenylethylammonium (PEA) in a mixed-halide perovskite composition to solve the inherent material-level challenges in 1.80–1.85 eV E g perovskites. The amount of PEA incorporation governs the topography and optoelectronic properties of resultant films. Detailed structural and spectroscopic characterization reveal the characteristic trends in crystalline size, orientation, and charge carrier recombination dynamics and rationalize the origin of improved material quality with higher luminescence. With careful interface optimization, the improved material characteristics were translated to devices and V oc values of 1.30–1.35 V were achieved, which correspond to 85–87% of the theoretical limit. Using an optimal amount of PEA incorporation to balance the increase in V oc and the decrease in charge collection, a highest power conversion efficiency of 12.2% was realized. Our results clearly overcome the photovoltage plateau in the 1.80–1.85 eV E g range and represent the highest V oc achieved for mixed-halide PVKSCs. This study provides widely translatable insights, an important breakthrough, and a promising platform for next-generation perovskite tandems.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.8b01480</identifier><identifier>PMID: 29733214</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>2D−3D perovskite ; charge recombination dynamics ; mixed-halide phase segregation ; open-circuit voltage bottleneck ; optoelectronic quality ; SOLAR ENERGY ; Tandem solar cell</subject><ispartof>Nano letters, 2018-06, Vol.18 (6), p.3985-3993</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a460t-ee3337390fefa665caf535e6a820b2a27960692ebe83245a956a86a8b13d9b923</citedby><cites>FETCH-LOGICAL-a460t-ee3337390fefa665caf535e6a820b2a27960692ebe83245a956a86a8b13d9b923</cites><orcidid>0000-0003-1071-6443 ; 0000-0002-9219-7749 ; 0000-0003-2069-7899 ; 0000-0001-9806-080X ; 0000000320697899 ; 000000019806080X ; 0000000310716443 ; 0000000292197749</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29733214$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1436489$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Rajagopal, Adharsh</creatorcontrib><creatorcontrib>Stoddard, Ryan J</creatorcontrib><creatorcontrib>Jo, Sae Byeok</creatorcontrib><creatorcontrib>Hillhouse, Hugh W</creatorcontrib><creatorcontrib>Jen, Alex K.-Y</creatorcontrib><creatorcontrib>Univ. of Washington, Seattle, WA (United States)</creatorcontrib><title>Overcoming the Photovoltage Plateau in Large Bandgap Perovskite Photovoltaics</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Development of large bandgap (1.80–1.85 eV E g) perovskite is crucial for perovskite–perovskite tandem solar cells. However, the performance of 1.80–1.85 eV E g perovskite solar cells (PVKSCs) are significantly lagging their counterparts in the 1.60–1.75 eV E g range. This is because the photovoltage (V oc) does not proportionally increase with E g due to lower optoelectronic quality of conventional (MA,FA,Cs)Pb(I,Br)3 and results in a photovoltage plateau (V oc limited to 80% of the theoretical limit for ∼1.8 eV E g). Here, we incorporate phenylethylammonium (PEA) in a mixed-halide perovskite composition to solve the inherent material-level challenges in 1.80–1.85 eV E g perovskites. The amount of PEA incorporation governs the topography and optoelectronic properties of resultant films. Detailed structural and spectroscopic characterization reveal the characteristic trends in crystalline size, orientation, and charge carrier recombination dynamics and rationalize the origin of improved material quality with higher luminescence. With careful interface optimization, the improved material characteristics were translated to devices and V oc values of 1.30–1.35 V were achieved, which correspond to 85–87% of the theoretical limit. Using an optimal amount of PEA incorporation to balance the increase in V oc and the decrease in charge collection, a highest power conversion efficiency of 12.2% was realized. Our results clearly overcome the photovoltage plateau in the 1.80–1.85 eV E g range and represent the highest V oc achieved for mixed-halide PVKSCs. This study provides widely translatable insights, an important breakthrough, and a promising platform for next-generation perovskite tandems.</description><subject>2D−3D perovskite</subject><subject>charge recombination dynamics</subject><subject>mixed-halide phase segregation</subject><subject>open-circuit voltage bottleneck</subject><subject>optoelectronic quality</subject><subject>SOLAR ENERGY</subject><subject>Tandem solar cell</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kMFqGzEQhkVJaZy0b1DKklMudkfSrnZ1bE3aBFySQ3IWs_KsvelaciWtIW9fGdshp4BgpNH3j8TH2FcOMw6Cf0cbZw6dHyilWdMCLxv4wCa8kjBVWouz131TnrOLGJ8BQMsKPrFzoWspBS8n7M_9joL1m96tirSm4mHtk9_5IeEqHwZMhGPRu2KBITd-oluucFs8UPC7-LdPbwO9jZ_Zxw6HSF-O9ZI9_bp5nN9OF_e_7-Y_FlMsFaQpkZSylho66lCpymJXyYoUNgJagaLWCpQW1FIjRVmhrvJVXi2XS91qIS_Z1WGuj6k30eaP2LX1zpFNhpdSlY3O0PUB2gb_b6SYzKaPloYBHfkxGgGyqqEG1WS0PKA2-BgDdWYb-g2GF8PB7G2bbNucbJuj7Rz7dnxhbDe0fA2d9GYADsA-_uzH4LKV92f-BxPljrM</recordid><startdate>20180613</startdate><enddate>20180613</enddate><creator>Rajagopal, Adharsh</creator><creator>Stoddard, Ryan J</creator><creator>Jo, Sae Byeok</creator><creator>Hillhouse, Hugh W</creator><creator>Jen, Alex K.-Y</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-1071-6443</orcidid><orcidid>https://orcid.org/0000-0002-9219-7749</orcidid><orcidid>https://orcid.org/0000-0003-2069-7899</orcidid><orcidid>https://orcid.org/0000-0001-9806-080X</orcidid><orcidid>https://orcid.org/0000000320697899</orcidid><orcidid>https://orcid.org/000000019806080X</orcidid><orcidid>https://orcid.org/0000000310716443</orcidid><orcidid>https://orcid.org/0000000292197749</orcidid></search><sort><creationdate>20180613</creationdate><title>Overcoming the Photovoltage Plateau in Large Bandgap Perovskite Photovoltaics</title><author>Rajagopal, Adharsh ; Stoddard, Ryan J ; Jo, Sae Byeok ; Hillhouse, Hugh W ; Jen, Alex K.-Y</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a460t-ee3337390fefa665caf535e6a820b2a27960692ebe83245a956a86a8b13d9b923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>2D−3D perovskite</topic><topic>charge recombination dynamics</topic><topic>mixed-halide phase segregation</topic><topic>open-circuit voltage bottleneck</topic><topic>optoelectronic quality</topic><topic>SOLAR ENERGY</topic><topic>Tandem solar cell</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rajagopal, Adharsh</creatorcontrib><creatorcontrib>Stoddard, Ryan J</creatorcontrib><creatorcontrib>Jo, Sae Byeok</creatorcontrib><creatorcontrib>Hillhouse, Hugh W</creatorcontrib><creatorcontrib>Jen, Alex K.-Y</creatorcontrib><creatorcontrib>Univ. of Washington, Seattle, WA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rajagopal, Adharsh</au><au>Stoddard, Ryan J</au><au>Jo, Sae Byeok</au><au>Hillhouse, Hugh W</au><au>Jen, Alex K.-Y</au><aucorp>Univ. of Washington, Seattle, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Overcoming the Photovoltage Plateau in Large Bandgap Perovskite Photovoltaics</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2018-06-13</date><risdate>2018</risdate><volume>18</volume><issue>6</issue><spage>3985</spage><epage>3993</epage><pages>3985-3993</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Development of large bandgap (1.80–1.85 eV E g) perovskite is crucial for perovskite–perovskite tandem solar cells. However, the performance of 1.80–1.85 eV E g perovskite solar cells (PVKSCs) are significantly lagging their counterparts in the 1.60–1.75 eV E g range. This is because the photovoltage (V oc) does not proportionally increase with E g due to lower optoelectronic quality of conventional (MA,FA,Cs)Pb(I,Br)3 and results in a photovoltage plateau (V oc limited to 80% of the theoretical limit for ∼1.8 eV E g). Here, we incorporate phenylethylammonium (PEA) in a mixed-halide perovskite composition to solve the inherent material-level challenges in 1.80–1.85 eV E g perovskites. The amount of PEA incorporation governs the topography and optoelectronic properties of resultant films. Detailed structural and spectroscopic characterization reveal the characteristic trends in crystalline size, orientation, and charge carrier recombination dynamics and rationalize the origin of improved material quality with higher luminescence. With careful interface optimization, the improved material characteristics were translated to devices and V oc values of 1.30–1.35 V were achieved, which correspond to 85–87% of the theoretical limit. Using an optimal amount of PEA incorporation to balance the increase in V oc and the decrease in charge collection, a highest power conversion efficiency of 12.2% was realized. Our results clearly overcome the photovoltage plateau in the 1.80–1.85 eV E g range and represent the highest V oc achieved for mixed-halide PVKSCs. This study provides widely translatable insights, an important breakthrough, and a promising platform for next-generation perovskite tandems.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29733214</pmid><doi>10.1021/acs.nanolett.8b01480</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1071-6443</orcidid><orcidid>https://orcid.org/0000-0002-9219-7749</orcidid><orcidid>https://orcid.org/0000-0003-2069-7899</orcidid><orcidid>https://orcid.org/0000-0001-9806-080X</orcidid><orcidid>https://orcid.org/0000000320697899</orcidid><orcidid>https://orcid.org/000000019806080X</orcidid><orcidid>https://orcid.org/0000000310716443</orcidid><orcidid>https://orcid.org/0000000292197749</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-6984 |
ispartof | Nano letters, 2018-06, Vol.18 (6), p.3985-3993 |
issn | 1530-6984 1530-6992 |
language | eng |
recordid | cdi_osti_scitechconnect_1436489 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | 2D−3D perovskite charge recombination dynamics mixed-halide phase segregation open-circuit voltage bottleneck optoelectronic quality SOLAR ENERGY Tandem solar cell |
title | Overcoming the Photovoltage Plateau in Large Bandgap Perovskite Photovoltaics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T17%3A40%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Overcoming%20the%20Photovoltage%20Plateau%20in%20Large%20Bandgap%20Perovskite%20Photovoltaics&rft.jtitle=Nano%20letters&rft.au=Rajagopal,%20Adharsh&rft.aucorp=Univ.%20of%20Washington,%20Seattle,%20WA%20(United%20States)&rft.date=2018-06-13&rft.volume=18&rft.issue=6&rft.spage=3985&rft.epage=3993&rft.pages=3985-3993&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.8b01480&rft_dat=%3Cproquest_osti_%3E2035707068%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a460t-ee3337390fefa665caf535e6a820b2a27960692ebe83245a956a86a8b13d9b923%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2035707068&rft_id=info:pmid/29733214&rfr_iscdi=true |