Loading…

Anharmonicity and Disorder in the Black Phases of Cesium Lead Iodide Used for Stable Inorganic Perovskite Solar Cells

Hybrid organic–inorganic perovskites emerged as a new generation of absorber materials for high-efficiency low-cost solar cells in 2009. Very recently, fully inorganic perovskite quantum dots also led to promising efficiencies, making them a potentially stable and efficient alternative to their hybr...

Full description

Saved in:
Bibliographic Details
Published in:ACS nano 2018-04, Vol.12 (4), p.3477-3486
Main Authors: Marronnier, Arthur, Roma, Guido, Boyer-Richard, Soline, Pedesseau, Laurent, Jancu, Jean-Marc, Bonnassieux, Yvan, Katan, Claudine, Stoumpos, Constantinos C, Kanatzidis, Mercouri G, Even, Jacky
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a501t-edd78dc05f0873f2e8df2341b11415abebd2764ad67ebf2d693d4393eb4b0b5c3
cites cdi_FETCH-LOGICAL-a501t-edd78dc05f0873f2e8df2341b11415abebd2764ad67ebf2d693d4393eb4b0b5c3
container_end_page 3486
container_issue 4
container_start_page 3477
container_title ACS nano
container_volume 12
creator Marronnier, Arthur
Roma, Guido
Boyer-Richard, Soline
Pedesseau, Laurent
Jancu, Jean-Marc
Bonnassieux, Yvan
Katan, Claudine
Stoumpos, Constantinos C
Kanatzidis, Mercouri G
Even, Jacky
description Hybrid organic–inorganic perovskites emerged as a new generation of absorber materials for high-efficiency low-cost solar cells in 2009. Very recently, fully inorganic perovskite quantum dots also led to promising efficiencies, making them a potentially stable and efficient alternative to their hybrid cousins. Currently, the record efficiency is obtained with CsPbI3, whose crystallographical characterization is still limited. Here, we show through high-resolution in situ synchrotron XRD measurements that CsPbI3 can be undercooled below its transition temperature and temporarily maintained in its perovskite structure down to room temperature, stabilizing a metastable perovskite polytype (black γ-phase) crucial for photovoltaic applications. Our analysis of the structural phase transitions reveals a highly anisotropic evolution of the individual lattice parameters versus temperature. Structural, vibrational, and electronic properties of all the experimentally observed black phases are further inspected based on several theoretical approaches. Whereas the black γ-phase is shown to behave harmonically around equilibrium, for the tetragonal phase, density functional theory reveals the same anharmonic behavior, with a Brillouin zone-centered double-well instability, as for the cubic phase. Using total energy and vibrational entropy calculations, we highlight the competition between all the low-temperature phases of CsPbI3 (γ, δ, β) and show that avoiding the order–disorder entropy term arising from double-well instabilities is key to preventing the formation of the yellow perovskitoid phase. A symmetry-based tight-binding model, validated by self-consistent GW calculations including spin–orbit coupling, affords further insight into their electronic properties, with evidence of Rashba effect for both cubic and tetragonal phases when using the symmetry-breaking structures obtained through frozen phonon calculations.
doi_str_mv 10.1021/acsnano.8b00267
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1436785</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2018015093</sourcerecordid><originalsourceid>FETCH-LOGICAL-a501t-edd78dc05f0873f2e8df2341b11415abebd2764ad67ebf2d693d4393eb4b0b5c3</originalsourceid><addsrcrecordid>eNp1kc9rFDEYhoMotlbP3iR4qsi2yWSSzBzXrbYLCxZqwVvIj2-ctDNJTWYK_e9Nme3ePH3h43kf-PIi9JGSM0oqeq5tDjrEs8YQUgn5Ch3TlokVacTv14c3p0foXc53hHDZSPEWHVUtF5zz9hjN69DrNMbgrZ-esA4OX_gck4OEfcBTD_jboO09vu51hoxjhzeQ_TziHWiHt9F5B_g2g8NdTPhm0mYAvA0x_dHFia8hxcd87yfAN3HQqaSHIb9Hbzo9ZPiwnyfo9sf3X5ur1e7n5Xaz3q00J3RagXOycZbwjjSSdRU0rqtYTQ2lNeXagHGVFLV2QoLpKida5mrWMjC1IYZbdoI-L96YJ69yORFsb2MIYCdFayZkwwv0ZYF6PaiH5EednlTUXl2td-p5R6isKaPskRb2dGEfUvw7Q57U6LMtJ-kAcc6qIrQhlJOWFfR8QW2KOSfoDm5K1HN5al-e2pdXEp_28tmM4A78S1sF-LoAJanu4pxC-bz_6v4BFFSklg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2018015093</pqid></control><display><type>article</type><title>Anharmonicity and Disorder in the Black Phases of Cesium Lead Iodide Used for Stable Inorganic Perovskite Solar Cells</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Marronnier, Arthur ; Roma, Guido ; Boyer-Richard, Soline ; Pedesseau, Laurent ; Jancu, Jean-Marc ; Bonnassieux, Yvan ; Katan, Claudine ; Stoumpos, Constantinos C ; Kanatzidis, Mercouri G ; Even, Jacky</creator><creatorcontrib>Marronnier, Arthur ; Roma, Guido ; Boyer-Richard, Soline ; Pedesseau, Laurent ; Jancu, Jean-Marc ; Bonnassieux, Yvan ; Katan, Claudine ; Stoumpos, Constantinos C ; Kanatzidis, Mercouri G ; Even, Jacky ; Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><description>Hybrid organic–inorganic perovskites emerged as a new generation of absorber materials for high-efficiency low-cost solar cells in 2009. Very recently, fully inorganic perovskite quantum dots also led to promising efficiencies, making them a potentially stable and efficient alternative to their hybrid cousins. Currently, the record efficiency is obtained with CsPbI3, whose crystallographical characterization is still limited. Here, we show through high-resolution in situ synchrotron XRD measurements that CsPbI3 can be undercooled below its transition temperature and temporarily maintained in its perovskite structure down to room temperature, stabilizing a metastable perovskite polytype (black γ-phase) crucial for photovoltaic applications. Our analysis of the structural phase transitions reveals a highly anisotropic evolution of the individual lattice parameters versus temperature. Structural, vibrational, and electronic properties of all the experimentally observed black phases are further inspected based on several theoretical approaches. Whereas the black γ-phase is shown to behave harmonically around equilibrium, for the tetragonal phase, density functional theory reveals the same anharmonic behavior, with a Brillouin zone-centered double-well instability, as for the cubic phase. Using total energy and vibrational entropy calculations, we highlight the competition between all the low-temperature phases of CsPbI3 (γ, δ, β) and show that avoiding the order–disorder entropy term arising from double-well instabilities is key to preventing the formation of the yellow perovskitoid phase. A symmetry-based tight-binding model, validated by self-consistent GW calculations including spin–orbit coupling, affords further insight into their electronic properties, with evidence of Rashba effect for both cubic and tetragonal phases when using the symmetry-breaking structures obtained through frozen phonon calculations.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.8b00267</identifier><identifier>PMID: 29565559</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>anharmonicity ; Band structure ; cesium ; Chemical Sciences ; Chemical structure ; DFT ; inorganic perovskite solar cells ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Perovskites ; Phase transitions ; Phonons ; Physics ; Rashba ; SXRD</subject><ispartof>ACS nano, 2018-04, Vol.12 (4), p.3477-3486</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a501t-edd78dc05f0873f2e8df2341b11415abebd2764ad67ebf2d693d4393eb4b0b5c3</citedby><cites>FETCH-LOGICAL-a501t-edd78dc05f0873f2e8df2341b11415abebd2764ad67ebf2d693d4393eb4b0b5c3</cites><orcidid>0000-0002-2017-5823 ; 0000-0001-9414-8644 ; 0000-0002-4607-3390 ; 0000-0003-0984-1140 ; 0000-0003-2037-4168 ; 0000-0001-8396-9578 ; 0000-0002-9779-4868 ; 0000-0002-0880-0999 ; 0000-0003-4413-2067 ; 0000000208800999 ; 0000000297794868 ; 0000000194148644 ; 0000000246073390 ; 0000000183969578 ; 0000000309841140 ; 0000000320374168 ; 0000000220175823</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29565559$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01741313$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1436785$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Marronnier, Arthur</creatorcontrib><creatorcontrib>Roma, Guido</creatorcontrib><creatorcontrib>Boyer-Richard, Soline</creatorcontrib><creatorcontrib>Pedesseau, Laurent</creatorcontrib><creatorcontrib>Jancu, Jean-Marc</creatorcontrib><creatorcontrib>Bonnassieux, Yvan</creatorcontrib><creatorcontrib>Katan, Claudine</creatorcontrib><creatorcontrib>Stoumpos, Constantinos C</creatorcontrib><creatorcontrib>Kanatzidis, Mercouri G</creatorcontrib><creatorcontrib>Even, Jacky</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><title>Anharmonicity and Disorder in the Black Phases of Cesium Lead Iodide Used for Stable Inorganic Perovskite Solar Cells</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Hybrid organic–inorganic perovskites emerged as a new generation of absorber materials for high-efficiency low-cost solar cells in 2009. Very recently, fully inorganic perovskite quantum dots also led to promising efficiencies, making them a potentially stable and efficient alternative to their hybrid cousins. Currently, the record efficiency is obtained with CsPbI3, whose crystallographical characterization is still limited. Here, we show through high-resolution in situ synchrotron XRD measurements that CsPbI3 can be undercooled below its transition temperature and temporarily maintained in its perovskite structure down to room temperature, stabilizing a metastable perovskite polytype (black γ-phase) crucial for photovoltaic applications. Our analysis of the structural phase transitions reveals a highly anisotropic evolution of the individual lattice parameters versus temperature. Structural, vibrational, and electronic properties of all the experimentally observed black phases are further inspected based on several theoretical approaches. Whereas the black γ-phase is shown to behave harmonically around equilibrium, for the tetragonal phase, density functional theory reveals the same anharmonic behavior, with a Brillouin zone-centered double-well instability, as for the cubic phase. Using total energy and vibrational entropy calculations, we highlight the competition between all the low-temperature phases of CsPbI3 (γ, δ, β) and show that avoiding the order–disorder entropy term arising from double-well instabilities is key to preventing the formation of the yellow perovskitoid phase. A symmetry-based tight-binding model, validated by self-consistent GW calculations including spin–orbit coupling, affords further insight into their electronic properties, with evidence of Rashba effect for both cubic and tetragonal phases when using the symmetry-breaking structures obtained through frozen phonon calculations.</description><subject>anharmonicity</subject><subject>Band structure</subject><subject>cesium</subject><subject>Chemical Sciences</subject><subject>Chemical structure</subject><subject>DFT</subject><subject>inorganic perovskite solar cells</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Perovskites</subject><subject>Phase transitions</subject><subject>Phonons</subject><subject>Physics</subject><subject>Rashba</subject><subject>SXRD</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kc9rFDEYhoMotlbP3iR4qsi2yWSSzBzXrbYLCxZqwVvIj2-ctDNJTWYK_e9Nme3ePH3h43kf-PIi9JGSM0oqeq5tDjrEs8YQUgn5Ch3TlokVacTv14c3p0foXc53hHDZSPEWHVUtF5zz9hjN69DrNMbgrZ-esA4OX_gck4OEfcBTD_jboO09vu51hoxjhzeQ_TziHWiHt9F5B_g2g8NdTPhm0mYAvA0x_dHFia8hxcd87yfAN3HQqaSHIb9Hbzo9ZPiwnyfo9sf3X5ur1e7n5Xaz3q00J3RagXOycZbwjjSSdRU0rqtYTQ2lNeXagHGVFLV2QoLpKida5mrWMjC1IYZbdoI-L96YJ69yORFsb2MIYCdFayZkwwv0ZYF6PaiH5EednlTUXl2td-p5R6isKaPskRb2dGEfUvw7Q57U6LMtJ-kAcc6qIrQhlJOWFfR8QW2KOSfoDm5K1HN5al-e2pdXEp_28tmM4A78S1sF-LoAJanu4pxC-bz_6v4BFFSklg</recordid><startdate>20180424</startdate><enddate>20180424</enddate><creator>Marronnier, Arthur</creator><creator>Roma, Guido</creator><creator>Boyer-Richard, Soline</creator><creator>Pedesseau, Laurent</creator><creator>Jancu, Jean-Marc</creator><creator>Bonnassieux, Yvan</creator><creator>Katan, Claudine</creator><creator>Stoumpos, Constantinos C</creator><creator>Kanatzidis, Mercouri G</creator><creator>Even, Jacky</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-2017-5823</orcidid><orcidid>https://orcid.org/0000-0001-9414-8644</orcidid><orcidid>https://orcid.org/0000-0002-4607-3390</orcidid><orcidid>https://orcid.org/0000-0003-0984-1140</orcidid><orcidid>https://orcid.org/0000-0003-2037-4168</orcidid><orcidid>https://orcid.org/0000-0001-8396-9578</orcidid><orcidid>https://orcid.org/0000-0002-9779-4868</orcidid><orcidid>https://orcid.org/0000-0002-0880-0999</orcidid><orcidid>https://orcid.org/0000-0003-4413-2067</orcidid><orcidid>https://orcid.org/0000000208800999</orcidid><orcidid>https://orcid.org/0000000297794868</orcidid><orcidid>https://orcid.org/0000000194148644</orcidid><orcidid>https://orcid.org/0000000246073390</orcidid><orcidid>https://orcid.org/0000000183969578</orcidid><orcidid>https://orcid.org/0000000309841140</orcidid><orcidid>https://orcid.org/0000000320374168</orcidid><orcidid>https://orcid.org/0000000220175823</orcidid></search><sort><creationdate>20180424</creationdate><title>Anharmonicity and Disorder in the Black Phases of Cesium Lead Iodide Used for Stable Inorganic Perovskite Solar Cells</title><author>Marronnier, Arthur ; Roma, Guido ; Boyer-Richard, Soline ; Pedesseau, Laurent ; Jancu, Jean-Marc ; Bonnassieux, Yvan ; Katan, Claudine ; Stoumpos, Constantinos C ; Kanatzidis, Mercouri G ; Even, Jacky</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a501t-edd78dc05f0873f2e8df2341b11415abebd2764ad67ebf2d693d4393eb4b0b5c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>anharmonicity</topic><topic>Band structure</topic><topic>cesium</topic><topic>Chemical Sciences</topic><topic>Chemical structure</topic><topic>DFT</topic><topic>inorganic perovskite solar cells</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Perovskites</topic><topic>Phase transitions</topic><topic>Phonons</topic><topic>Physics</topic><topic>Rashba</topic><topic>SXRD</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marronnier, Arthur</creatorcontrib><creatorcontrib>Roma, Guido</creatorcontrib><creatorcontrib>Boyer-Richard, Soline</creatorcontrib><creatorcontrib>Pedesseau, Laurent</creatorcontrib><creatorcontrib>Jancu, Jean-Marc</creatorcontrib><creatorcontrib>Bonnassieux, Yvan</creatorcontrib><creatorcontrib>Katan, Claudine</creatorcontrib><creatorcontrib>Stoumpos, Constantinos C</creatorcontrib><creatorcontrib>Kanatzidis, Mercouri G</creatorcontrib><creatorcontrib>Even, Jacky</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marronnier, Arthur</au><au>Roma, Guido</au><au>Boyer-Richard, Soline</au><au>Pedesseau, Laurent</au><au>Jancu, Jean-Marc</au><au>Bonnassieux, Yvan</au><au>Katan, Claudine</au><au>Stoumpos, Constantinos C</au><au>Kanatzidis, Mercouri G</au><au>Even, Jacky</au><aucorp>Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anharmonicity and Disorder in the Black Phases of Cesium Lead Iodide Used for Stable Inorganic Perovskite Solar Cells</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2018-04-24</date><risdate>2018</risdate><volume>12</volume><issue>4</issue><spage>3477</spage><epage>3486</epage><pages>3477-3486</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Hybrid organic–inorganic perovskites emerged as a new generation of absorber materials for high-efficiency low-cost solar cells in 2009. Very recently, fully inorganic perovskite quantum dots also led to promising efficiencies, making them a potentially stable and efficient alternative to their hybrid cousins. Currently, the record efficiency is obtained with CsPbI3, whose crystallographical characterization is still limited. Here, we show through high-resolution in situ synchrotron XRD measurements that CsPbI3 can be undercooled below its transition temperature and temporarily maintained in its perovskite structure down to room temperature, stabilizing a metastable perovskite polytype (black γ-phase) crucial for photovoltaic applications. Our analysis of the structural phase transitions reveals a highly anisotropic evolution of the individual lattice parameters versus temperature. Structural, vibrational, and electronic properties of all the experimentally observed black phases are further inspected based on several theoretical approaches. Whereas the black γ-phase is shown to behave harmonically around equilibrium, for the tetragonal phase, density functional theory reveals the same anharmonic behavior, with a Brillouin zone-centered double-well instability, as for the cubic phase. Using total energy and vibrational entropy calculations, we highlight the competition between all the low-temperature phases of CsPbI3 (γ, δ, β) and show that avoiding the order–disorder entropy term arising from double-well instabilities is key to preventing the formation of the yellow perovskitoid phase. A symmetry-based tight-binding model, validated by self-consistent GW calculations including spin–orbit coupling, affords further insight into their electronic properties, with evidence of Rashba effect for both cubic and tetragonal phases when using the symmetry-breaking structures obtained through frozen phonon calculations.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29565559</pmid><doi>10.1021/acsnano.8b00267</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2017-5823</orcidid><orcidid>https://orcid.org/0000-0001-9414-8644</orcidid><orcidid>https://orcid.org/0000-0002-4607-3390</orcidid><orcidid>https://orcid.org/0000-0003-0984-1140</orcidid><orcidid>https://orcid.org/0000-0003-2037-4168</orcidid><orcidid>https://orcid.org/0000-0001-8396-9578</orcidid><orcidid>https://orcid.org/0000-0002-9779-4868</orcidid><orcidid>https://orcid.org/0000-0002-0880-0999</orcidid><orcidid>https://orcid.org/0000-0003-4413-2067</orcidid><orcidid>https://orcid.org/0000000208800999</orcidid><orcidid>https://orcid.org/0000000297794868</orcidid><orcidid>https://orcid.org/0000000194148644</orcidid><orcidid>https://orcid.org/0000000246073390</orcidid><orcidid>https://orcid.org/0000000183969578</orcidid><orcidid>https://orcid.org/0000000309841140</orcidid><orcidid>https://orcid.org/0000000320374168</orcidid><orcidid>https://orcid.org/0000000220175823</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2018-04, Vol.12 (4), p.3477-3486
issn 1936-0851
1936-086X
language eng
recordid cdi_osti_scitechconnect_1436785
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects anharmonicity
Band structure
cesium
Chemical Sciences
Chemical structure
DFT
inorganic perovskite solar cells
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Perovskites
Phase transitions
Phonons
Physics
Rashba
SXRD
title Anharmonicity and Disorder in the Black Phases of Cesium Lead Iodide Used for Stable Inorganic Perovskite Solar Cells
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T18%3A11%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anharmonicity%20and%20Disorder%20in%20the%20Black%20Phases%20of%20Cesium%20Lead%20Iodide%20Used%20for%20Stable%20Inorganic%20Perovskite%20Solar%20Cells&rft.jtitle=ACS%20nano&rft.au=Marronnier,%20Arthur&rft.aucorp=Argonne%20National%20Laboratory%20(ANL),%20Argonne,%20IL%20(United%20States).%20Advanced%20Photon%20Source%20(APS)&rft.date=2018-04-24&rft.volume=12&rft.issue=4&rft.spage=3477&rft.epage=3486&rft.pages=3477-3486&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.8b00267&rft_dat=%3Cproquest_osti_%3E2018015093%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a501t-edd78dc05f0873f2e8df2341b11415abebd2764ad67ebf2d693d4393eb4b0b5c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2018015093&rft_id=info:pmid/29565559&rfr_iscdi=true