Loading…
GLUCOSAMINE INOSITOLPHOSPHORYLCERAMIDE TRANSFERASE1 (GINT1) Is a GlcNAc-Containing Glycosylinositol Phosphorylceramide Glycosyltransferase
Glycosylinositol phosphorylceramides (GIPCs), which have a ceramide core linked to a glycan headgroup of varying structures, are the major sphingolipids in the plant plasma membrane. Recently, we identified the major biosynthetic genes for GIPC glycosylation in Arabidopsis (Arabidopsis thaliana) and...
Saved in:
Published in: | Plant physiology (Bethesda) 2018-07, Vol.177 (3), p.938-952 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 952 |
container_issue | 3 |
container_start_page | 938 |
container_title | Plant physiology (Bethesda) |
container_volume | 177 |
creator | Ishikawa, Toshiki Fang, Lin Rennie, Emilie A. Sechet, Julien Yan, Jingwei Jing, Beibei Moore, William Cahoon, Edgar B. Scheller, Henrik V. Kawai-Yamada, Maki Mortimer, Jenny C. |
description | Glycosylinositol phosphorylceramides (GIPCs), which have a ceramide core linked to a glycan headgroup of varying structures, are the major sphingolipids in the plant plasma membrane. Recently, we identified the major biosynthetic genes for GIPC glycosylation in Arabidopsis (Arabidopsis thaliana) and demonstrated that the glycan headgroup is essential for plant viability. However, the function of GIPCs and the significance of their structural variation are poorly understood. Here, we characterized the Arabidopsis glycosyltransferase GLUCOSAMINE INOSITOLPHOSPHORYLCERAMIDE TRANSFERASE1 (GINT1) and showed that it is responsible for the glycosylation of a subgroup of GIPCs found in seeds and pollen that contain GlcNAc and GlcN [collectively GlcN(Ac)]. In Arabidopsis gint1 plants, loss of the GlcN(Ac) GIPCs did not affect vegetative growth, although seed germination was less sensitive to abiotic stress than in wild-type plants. However, in rice, where GlcN(Ac) containing GIPCs are the major GIPC subgroup in vegetative tissue, loss of GINT1 was seedling lethal. Furthermore, we could produce, de novo, "rice-like" GlcN(Ac) GIPCs in Arabidopsis leaves, which allowed us to test the function of different sugars in the GIPC headgroup. This study describes a monocot GIPC biosynthetic enzyme and shows that its Arabidopsis homolog has the same biochemical function. We also identify a possible role for GIPCs in maintaining cell-cell adhesion. |
doi_str_mv | 10.1104/pp.18.00396 |
format | article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_osti_scitechconnect_1437090</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26508160</jstor_id><sourcerecordid>26508160</sourcerecordid><originalsourceid>FETCH-LOGICAL-j245t-8a2850769196b9cc26e953e9f686acc2c455cf3036f811084d62c7e3239e501f3</originalsourceid><addsrcrecordid>eNpVkU9r2zAYxsXYaLOup503zE7dwZn-WLJ0KQTPTQ2eXeL0sJNRFblRcCTPcgb5CvvUE6Rru4MQ7_P8ePSgF4CPCM4Rgsm3YZgjPoeQCPYGzBAlOMY04W_BLGg4hpyLc_De-x2EEBGUnIFzLFIGkUhn4M-yvM_qZvGjqPKoqOqmWNfl3W3dhLP6WWb5Kljf82i9WlTNTZiaHEVXy6Jao69R4SMZLXtVLVScOTtJY419DMpROX_sjXXeTK6P7rbOD1s3HnulR7k3G_3MTKO0vguq1x_Au072Xl8-3Rfg_iZfZ7dxWS-LbFHGO5zQKeYScwpTJpBgD0IpzLSgRIuOcSbDqBJKVUcgYR0P_8OTDcMq1QQToSlEHbkA16fc4fCw1xulbSjRt8No9nI8tk6a9n_Hmm376H63DFICURoCvpwCnJ9M65WZtNoqZ61WU4sSkkIBA3T19Mrofh20n9q98Ur3vbTaHXyLw76wYJTjgH5-Xei5yb8tBeDTCdj5yY0vPqOQIwbJX0vPmqQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2039296582</pqid></control><display><type>article</type><title>GLUCOSAMINE INOSITOLPHOSPHORYLCERAMIDE TRANSFERASE1 (GINT1) Is a GlcNAc-Containing Glycosylinositol Phosphorylceramide Glycosyltransferase</title><source>Oxford Journals Online</source><source>JSTOR Archival Journals</source><creator>Ishikawa, Toshiki ; Fang, Lin ; Rennie, Emilie A. ; Sechet, Julien ; Yan, Jingwei ; Jing, Beibei ; Moore, William ; Cahoon, Edgar B. ; Scheller, Henrik V. ; Kawai-Yamada, Maki ; Mortimer, Jenny C.</creator><creatorcontrib>Ishikawa, Toshiki ; Fang, Lin ; Rennie, Emilie A. ; Sechet, Julien ; Yan, Jingwei ; Jing, Beibei ; Moore, William ; Cahoon, Edgar B. ; Scheller, Henrik V. ; Kawai-Yamada, Maki ; Mortimer, Jenny C. ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><description>Glycosylinositol phosphorylceramides (GIPCs), which have a ceramide core linked to a glycan headgroup of varying structures, are the major sphingolipids in the plant plasma membrane. Recently, we identified the major biosynthetic genes for GIPC glycosylation in Arabidopsis (Arabidopsis thaliana) and demonstrated that the glycan headgroup is essential for plant viability. However, the function of GIPCs and the significance of their structural variation are poorly understood. Here, we characterized the Arabidopsis glycosyltransferase GLUCOSAMINE INOSITOLPHOSPHORYLCERAMIDE TRANSFERASE1 (GINT1) and showed that it is responsible for the glycosylation of a subgroup of GIPCs found in seeds and pollen that contain GlcNAc and GlcN [collectively GlcN(Ac)]. In Arabidopsis gint1 plants, loss of the GlcN(Ac) GIPCs did not affect vegetative growth, although seed germination was less sensitive to abiotic stress than in wild-type plants. However, in rice, where GlcN(Ac) containing GIPCs are the major GIPC subgroup in vegetative tissue, loss of GINT1 was seedling lethal. Furthermore, we could produce, de novo, "rice-like" GlcN(Ac) GIPCs in Arabidopsis leaves, which allowed us to test the function of different sugars in the GIPC headgroup. This study describes a monocot GIPC biosynthetic enzyme and shows that its Arabidopsis homolog has the same biochemical function. We also identify a possible role for GIPCs in maintaining cell-cell adhesion.</description><identifier>ISSN: 0032-0889</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.18.00396</identifier><identifier>PMID: 29760197</identifier><language>eng</language><publisher>United States: American Society of Plant Biologists</publisher><subject>Acetylglucosamine - chemistry ; Acetylglucosamine - metabolism ; Arabidopsis - cytology ; Arabidopsis - genetics ; Arabidopsis - growth & development ; Arabidopsis - metabolism ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; BASIC BIOLOGICAL SCIENCES ; BIOCHEMISTRY AND METABOLISM ; Cell Wall - chemistry ; Cell Wall - metabolism ; Ceramides - metabolism ; Gene Expression Regulation, Plant ; Glycosyltransferases - genetics ; Glycosyltransferases - metabolism ; Oryza - genetics ; Oryza - growth & development ; Oryza - metabolism ; Phylogeny ; Plant Proteins - chemistry ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plants, Genetically Modified ; Pollen - metabolism ; Seedlings - genetics ; Seedlings - growth & development ; Seeds - metabolism</subject><ispartof>Plant physiology (Bethesda), 2018-07, Vol.177 (3), p.938-952</ispartof><rights>2018 American Society of Plant Biologists</rights><rights>2018 American Society of Plant Biologists. All rights reserved.</rights><rights>2018 American Society of Plant Biologists. All rights reserved. 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-8732-052X ; 0000-0001-8083-6542 ; 0000-0002-7277-1176 ; 0000-0002-9421-5701 ; 0000-0001-6624-636X ; 0000-0003-4930-0875 ; 0000-0002-1140-7661 ; 0000-0002-4115-356X ; 0000-0001-8398-4743 ; 0000-0002-9971-4569 ; 0000-0002-6702-3560 ; 0000000299714569 ; 0000000183984743 ; 000000024115356X ; 000000028732052X ; 000000016624636X ; 0000000294215701 ; 0000000272771176 ; 0000000211407661 ; 0000000349300875 ; 0000000180836542 ; 0000000267023560</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26508160$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26508160$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,885,27922,27923,58236,58469</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29760197$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1437090$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ishikawa, Toshiki</creatorcontrib><creatorcontrib>Fang, Lin</creatorcontrib><creatorcontrib>Rennie, Emilie A.</creatorcontrib><creatorcontrib>Sechet, Julien</creatorcontrib><creatorcontrib>Yan, Jingwei</creatorcontrib><creatorcontrib>Jing, Beibei</creatorcontrib><creatorcontrib>Moore, William</creatorcontrib><creatorcontrib>Cahoon, Edgar B.</creatorcontrib><creatorcontrib>Scheller, Henrik V.</creatorcontrib><creatorcontrib>Kawai-Yamada, Maki</creatorcontrib><creatorcontrib>Mortimer, Jenny C.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><title>GLUCOSAMINE INOSITOLPHOSPHORYLCERAMIDE TRANSFERASE1 (GINT1) Is a GlcNAc-Containing Glycosylinositol Phosphorylceramide Glycosyltransferase</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>Glycosylinositol phosphorylceramides (GIPCs), which have a ceramide core linked to a glycan headgroup of varying structures, are the major sphingolipids in the plant plasma membrane. Recently, we identified the major biosynthetic genes for GIPC glycosylation in Arabidopsis (Arabidopsis thaliana) and demonstrated that the glycan headgroup is essential for plant viability. However, the function of GIPCs and the significance of their structural variation are poorly understood. Here, we characterized the Arabidopsis glycosyltransferase GLUCOSAMINE INOSITOLPHOSPHORYLCERAMIDE TRANSFERASE1 (GINT1) and showed that it is responsible for the glycosylation of a subgroup of GIPCs found in seeds and pollen that contain GlcNAc and GlcN [collectively GlcN(Ac)]. In Arabidopsis gint1 plants, loss of the GlcN(Ac) GIPCs did not affect vegetative growth, although seed germination was less sensitive to abiotic stress than in wild-type plants. However, in rice, where GlcN(Ac) containing GIPCs are the major GIPC subgroup in vegetative tissue, loss of GINT1 was seedling lethal. Furthermore, we could produce, de novo, "rice-like" GlcN(Ac) GIPCs in Arabidopsis leaves, which allowed us to test the function of different sugars in the GIPC headgroup. This study describes a monocot GIPC biosynthetic enzyme and shows that its Arabidopsis homolog has the same biochemical function. We also identify a possible role for GIPCs in maintaining cell-cell adhesion.</description><subject>Acetylglucosamine - chemistry</subject><subject>Acetylglucosamine - metabolism</subject><subject>Arabidopsis - cytology</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - growth & development</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>BIOCHEMISTRY AND METABOLISM</subject><subject>Cell Wall - chemistry</subject><subject>Cell Wall - metabolism</subject><subject>Ceramides - metabolism</subject><subject>Gene Expression Regulation, Plant</subject><subject>Glycosyltransferases - genetics</subject><subject>Glycosyltransferases - metabolism</subject><subject>Oryza - genetics</subject><subject>Oryza - growth & development</subject><subject>Oryza - metabolism</subject><subject>Phylogeny</subject><subject>Plant Proteins - chemistry</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plants, Genetically Modified</subject><subject>Pollen - metabolism</subject><subject>Seedlings - genetics</subject><subject>Seedlings - growth & development</subject><subject>Seeds - metabolism</subject><issn>0032-0889</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpVkU9r2zAYxsXYaLOup503zE7dwZn-WLJ0KQTPTQ2eXeL0sJNRFblRcCTPcgb5CvvUE6Rru4MQ7_P8ePSgF4CPCM4Rgsm3YZgjPoeQCPYGzBAlOMY04W_BLGg4hpyLc_De-x2EEBGUnIFzLFIGkUhn4M-yvM_qZvGjqPKoqOqmWNfl3W3dhLP6WWb5Kljf82i9WlTNTZiaHEVXy6Jao69R4SMZLXtVLVScOTtJY419DMpROX_sjXXeTK6P7rbOD1s3HnulR7k3G_3MTKO0vguq1x_Au072Xl8-3Rfg_iZfZ7dxWS-LbFHGO5zQKeYScwpTJpBgD0IpzLSgRIuOcSbDqBJKVUcgYR0P_8OTDcMq1QQToSlEHbkA16fc4fCw1xulbSjRt8No9nI8tk6a9n_Hmm376H63DFICURoCvpwCnJ9M65WZtNoqZ61WU4sSkkIBA3T19Mrofh20n9q98Ur3vbTaHXyLw76wYJTjgH5-Xei5yb8tBeDTCdj5yY0vPqOQIwbJX0vPmqQ</recordid><startdate>20180701</startdate><enddate>20180701</enddate><creator>Ishikawa, Toshiki</creator><creator>Fang, Lin</creator><creator>Rennie, Emilie A.</creator><creator>Sechet, Julien</creator><creator>Yan, Jingwei</creator><creator>Jing, Beibei</creator><creator>Moore, William</creator><creator>Cahoon, Edgar B.</creator><creator>Scheller, Henrik V.</creator><creator>Kawai-Yamada, Maki</creator><creator>Mortimer, Jenny C.</creator><general>American Society of Plant Biologists</general><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8732-052X</orcidid><orcidid>https://orcid.org/0000-0001-8083-6542</orcidid><orcidid>https://orcid.org/0000-0002-7277-1176</orcidid><orcidid>https://orcid.org/0000-0002-9421-5701</orcidid><orcidid>https://orcid.org/0000-0001-6624-636X</orcidid><orcidid>https://orcid.org/0000-0003-4930-0875</orcidid><orcidid>https://orcid.org/0000-0002-1140-7661</orcidid><orcidid>https://orcid.org/0000-0002-4115-356X</orcidid><orcidid>https://orcid.org/0000-0001-8398-4743</orcidid><orcidid>https://orcid.org/0000-0002-9971-4569</orcidid><orcidid>https://orcid.org/0000-0002-6702-3560</orcidid><orcidid>https://orcid.org/0000000299714569</orcidid><orcidid>https://orcid.org/0000000183984743</orcidid><orcidid>https://orcid.org/000000024115356X</orcidid><orcidid>https://orcid.org/000000028732052X</orcidid><orcidid>https://orcid.org/000000016624636X</orcidid><orcidid>https://orcid.org/0000000294215701</orcidid><orcidid>https://orcid.org/0000000272771176</orcidid><orcidid>https://orcid.org/0000000211407661</orcidid><orcidid>https://orcid.org/0000000349300875</orcidid><orcidid>https://orcid.org/0000000180836542</orcidid><orcidid>https://orcid.org/0000000267023560</orcidid></search><sort><creationdate>20180701</creationdate><title>GLUCOSAMINE INOSITOLPHOSPHORYLCERAMIDE TRANSFERASE1 (GINT1) Is a GlcNAc-Containing Glycosylinositol Phosphorylceramide Glycosyltransferase</title><author>Ishikawa, Toshiki ; Fang, Lin ; Rennie, Emilie A. ; Sechet, Julien ; Yan, Jingwei ; Jing, Beibei ; Moore, William ; Cahoon, Edgar B. ; Scheller, Henrik V. ; Kawai-Yamada, Maki ; Mortimer, Jenny C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j245t-8a2850769196b9cc26e953e9f686acc2c455cf3036f811084d62c7e3239e501f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Acetylglucosamine - chemistry</topic><topic>Acetylglucosamine - metabolism</topic><topic>Arabidopsis - cytology</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - growth & development</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>BIOCHEMISTRY AND METABOLISM</topic><topic>Cell Wall - chemistry</topic><topic>Cell Wall - metabolism</topic><topic>Ceramides - metabolism</topic><topic>Gene Expression Regulation, Plant</topic><topic>Glycosyltransferases - genetics</topic><topic>Glycosyltransferases - metabolism</topic><topic>Oryza - genetics</topic><topic>Oryza - growth & development</topic><topic>Oryza - metabolism</topic><topic>Phylogeny</topic><topic>Plant Proteins - chemistry</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plants, Genetically Modified</topic><topic>Pollen - metabolism</topic><topic>Seedlings - genetics</topic><topic>Seedlings - growth & development</topic><topic>Seeds - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ishikawa, Toshiki</creatorcontrib><creatorcontrib>Fang, Lin</creatorcontrib><creatorcontrib>Rennie, Emilie A.</creatorcontrib><creatorcontrib>Sechet, Julien</creatorcontrib><creatorcontrib>Yan, Jingwei</creatorcontrib><creatorcontrib>Jing, Beibei</creatorcontrib><creatorcontrib>Moore, William</creatorcontrib><creatorcontrib>Cahoon, Edgar B.</creatorcontrib><creatorcontrib>Scheller, Henrik V.</creatorcontrib><creatorcontrib>Kawai-Yamada, Maki</creatorcontrib><creatorcontrib>Mortimer, Jenny C.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ishikawa, Toshiki</au><au>Fang, Lin</au><au>Rennie, Emilie A.</au><au>Sechet, Julien</au><au>Yan, Jingwei</au><au>Jing, Beibei</au><au>Moore, William</au><au>Cahoon, Edgar B.</au><au>Scheller, Henrik V.</au><au>Kawai-Yamada, Maki</au><au>Mortimer, Jenny C.</au><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GLUCOSAMINE INOSITOLPHOSPHORYLCERAMIDE TRANSFERASE1 (GINT1) Is a GlcNAc-Containing Glycosylinositol Phosphorylceramide Glycosyltransferase</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2018-07-01</date><risdate>2018</risdate><volume>177</volume><issue>3</issue><spage>938</spage><epage>952</epage><pages>938-952</pages><issn>0032-0889</issn><eissn>1532-2548</eissn><abstract>Glycosylinositol phosphorylceramides (GIPCs), which have a ceramide core linked to a glycan headgroup of varying structures, are the major sphingolipids in the plant plasma membrane. Recently, we identified the major biosynthetic genes for GIPC glycosylation in Arabidopsis (Arabidopsis thaliana) and demonstrated that the glycan headgroup is essential for plant viability. However, the function of GIPCs and the significance of their structural variation are poorly understood. Here, we characterized the Arabidopsis glycosyltransferase GLUCOSAMINE INOSITOLPHOSPHORYLCERAMIDE TRANSFERASE1 (GINT1) and showed that it is responsible for the glycosylation of a subgroup of GIPCs found in seeds and pollen that contain GlcNAc and GlcN [collectively GlcN(Ac)]. In Arabidopsis gint1 plants, loss of the GlcN(Ac) GIPCs did not affect vegetative growth, although seed germination was less sensitive to abiotic stress than in wild-type plants. However, in rice, where GlcN(Ac) containing GIPCs are the major GIPC subgroup in vegetative tissue, loss of GINT1 was seedling lethal. Furthermore, we could produce, de novo, "rice-like" GlcN(Ac) GIPCs in Arabidopsis leaves, which allowed us to test the function of different sugars in the GIPC headgroup. This study describes a monocot GIPC biosynthetic enzyme and shows that its Arabidopsis homolog has the same biochemical function. We also identify a possible role for GIPCs in maintaining cell-cell adhesion.</abstract><cop>United States</cop><pub>American Society of Plant Biologists</pub><pmid>29760197</pmid><doi>10.1104/pp.18.00396</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-8732-052X</orcidid><orcidid>https://orcid.org/0000-0001-8083-6542</orcidid><orcidid>https://orcid.org/0000-0002-7277-1176</orcidid><orcidid>https://orcid.org/0000-0002-9421-5701</orcidid><orcidid>https://orcid.org/0000-0001-6624-636X</orcidid><orcidid>https://orcid.org/0000-0003-4930-0875</orcidid><orcidid>https://orcid.org/0000-0002-1140-7661</orcidid><orcidid>https://orcid.org/0000-0002-4115-356X</orcidid><orcidid>https://orcid.org/0000-0001-8398-4743</orcidid><orcidid>https://orcid.org/0000-0002-9971-4569</orcidid><orcidid>https://orcid.org/0000-0002-6702-3560</orcidid><orcidid>https://orcid.org/0000000299714569</orcidid><orcidid>https://orcid.org/0000000183984743</orcidid><orcidid>https://orcid.org/000000024115356X</orcidid><orcidid>https://orcid.org/000000028732052X</orcidid><orcidid>https://orcid.org/000000016624636X</orcidid><orcidid>https://orcid.org/0000000294215701</orcidid><orcidid>https://orcid.org/0000000272771176</orcidid><orcidid>https://orcid.org/0000000211407661</orcidid><orcidid>https://orcid.org/0000000349300875</orcidid><orcidid>https://orcid.org/0000000180836542</orcidid><orcidid>https://orcid.org/0000000267023560</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-0889 |
ispartof | Plant physiology (Bethesda), 2018-07, Vol.177 (3), p.938-952 |
issn | 0032-0889 1532-2548 |
language | eng |
recordid | cdi_osti_scitechconnect_1437090 |
source | Oxford Journals Online; JSTOR Archival Journals |
subjects | Acetylglucosamine - chemistry Acetylglucosamine - metabolism Arabidopsis - cytology Arabidopsis - genetics Arabidopsis - growth & development Arabidopsis - metabolism Arabidopsis Proteins - genetics Arabidopsis Proteins - metabolism BASIC BIOLOGICAL SCIENCES BIOCHEMISTRY AND METABOLISM Cell Wall - chemistry Cell Wall - metabolism Ceramides - metabolism Gene Expression Regulation, Plant Glycosyltransferases - genetics Glycosyltransferases - metabolism Oryza - genetics Oryza - growth & development Oryza - metabolism Phylogeny Plant Proteins - chemistry Plant Proteins - genetics Plant Proteins - metabolism Plants, Genetically Modified Pollen - metabolism Seedlings - genetics Seedlings - growth & development Seeds - metabolism |
title | GLUCOSAMINE INOSITOLPHOSPHORYLCERAMIDE TRANSFERASE1 (GINT1) Is a GlcNAc-Containing Glycosylinositol Phosphorylceramide Glycosyltransferase |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T12%3A18%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GLUCOSAMINE%20INOSITOLPHOSPHORYLCERAMIDE%20TRANSFERASE1%20(GINT1)%20Is%20a%20GlcNAc-Containing%20Glycosylinositol%20Phosphorylceramide%20Glycosyltransferase&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Ishikawa,%20Toshiki&rft.aucorp=Lawrence%20Berkeley%20National%20Laboratory%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2018-07-01&rft.volume=177&rft.issue=3&rft.spage=938&rft.epage=952&rft.pages=938-952&rft.issn=0032-0889&rft.eissn=1532-2548&rft_id=info:doi/10.1104/pp.18.00396&rft_dat=%3Cjstor_pubme%3E26508160%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-j245t-8a2850769196b9cc26e953e9f686acc2c455cf3036f811084d62c7e3239e501f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2039296582&rft_id=info:pmid/29760197&rft_jstor_id=26508160&rfr_iscdi=true |