Loading…

Higher-Order Extended Lagrangian Born–Oppenheimer Molecular Dynamics for Classical Polarizable Models

Generalized extended Lagrangian Born–Oppenheimer molecular dynamics (XLBOMD) methods provide a framework for fast iteration-free simulations of models that normally require expensive electronic ground state optimizations prior to the force evaluations at every time step. XLBOMD uses dynamically driv...

Full description

Saved in:
Bibliographic Details
Published in:Journal of chemical theory and computation 2018-02, Vol.14 (2), p.499-511
Main Authors: Albaugh, Alex, Head-Gordon, Teresa, Niklasson, Anders M. N
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a433t-8c8c386d11525b0171fc0f4757250ae79c3d927f81645cf105848155a3cb3d433
cites cdi_FETCH-LOGICAL-a433t-8c8c386d11525b0171fc0f4757250ae79c3d927f81645cf105848155a3cb3d433
container_end_page 511
container_issue 2
container_start_page 499
container_title Journal of chemical theory and computation
container_volume 14
creator Albaugh, Alex
Head-Gordon, Teresa
Niklasson, Anders M. N
description Generalized extended Lagrangian Born–Oppenheimer molecular dynamics (XLBOMD) methods provide a framework for fast iteration-free simulations of models that normally require expensive electronic ground state optimizations prior to the force evaluations at every time step. XLBOMD uses dynamically driven auxiliary degrees of freedom that fluctuate about a variationally optimized ground state of an approximate “shadow” potential which approximates the true reference potential. While the requirements for such shadow potentials are well understood, constructing such potentials in practice has previously been ad hoc, and in this work, we present a systematic development of XLBOMD shadow potentials that match the reference potential to any order. We also introduce a framework for combining friction-like dissipation for the auxiliary degrees of freedom with general-order integration, a combination that was not previously possible. These developments are demonstrated with a simple fluctuating charge model and point induced dipole polarization models.
doi_str_mv 10.1021/acs.jctc.7b01041
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1438113</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1989571520</sourcerecordid><originalsourceid>FETCH-LOGICAL-a433t-8c8c386d11525b0171fc0f4757250ae79c3d927f81645cf105848155a3cb3d433</originalsourceid><addsrcrecordid>eNp1kcFuEzEURS1ERUthzwqNYNNFJ_iN7RnPEtKWVgoKC1hbjudN4shjB3tGoqz4B_6QL8EhaRdIrGzJ516_p0PIK6AzoBW80ybNtmY0s2ZFgXJ4Qs5A8LZs66p--ngHeUqep7SllDFesWfktGoZ1EzKM7K-tesNxnIZO4zF9fcRfYddsdDrqP3aal98CNH__vlruduh36AdMvYpODST07G4uvd6sCYVfYjF3OmUrNGu-Bzyo_2hVw4z3KFLL8hJr13Cl8fznHy9uf4yvy0Xy4938_eLUnPGxlIaaZisOwBRibxTA72hPW9EUwmqsWkN69qq6SXUXJgeqJBcghCamRXrcsU5eXPoDWm0Khk7otmY4D2aUQFnEmAPXRygXQzfJkyjGmwy6Jz2GKakoJWtaPIINKNv_0G3YYo-r6AqylnDa0brTNEDZWJIKWKvdtEOOt4roGpvSmVTam9KHU3lyOtj8bQasHsMPKjJwOUB-Bt9-PS_fX8A5E2egg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2043746306</pqid></control><display><type>article</type><title>Higher-Order Extended Lagrangian Born–Oppenheimer Molecular Dynamics for Classical Polarizable Models</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Albaugh, Alex ; Head-Gordon, Teresa ; Niklasson, Anders M. N</creator><creatorcontrib>Albaugh, Alex ; Head-Gordon, Teresa ; Niklasson, Anders M. N ; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States) ; Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><description>Generalized extended Lagrangian Born–Oppenheimer molecular dynamics (XLBOMD) methods provide a framework for fast iteration-free simulations of models that normally require expensive electronic ground state optimizations prior to the force evaluations at every time step. XLBOMD uses dynamically driven auxiliary degrees of freedom that fluctuate about a variationally optimized ground state of an approximate “shadow” potential which approximates the true reference potential. While the requirements for such shadow potentials are well understood, constructing such potentials in practice has previously been ad hoc, and in this work, we present a systematic development of XLBOMD shadow potentials that match the reference potential to any order. We also introduce a framework for combining friction-like dissipation for the auxiliary degrees of freedom with general-order integration, a combination that was not previously possible. These developments are demonstrated with a simple fluctuating charge model and point induced dipole polarization models.</description><identifier>ISSN: 1549-9618</identifier><identifier>EISSN: 1549-9626</identifier><identifier>DOI: 10.1021/acs.jctc.7b01041</identifier><identifier>PMID: 29316388</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Computer simulation ; Degrees of freedom ; Ground state ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Iterative methods ; Lagrangian function ; Mathematics ; Molecular chains ; Molecular Dynamics ; polarizable force fields ; Shadows ; Variation ; Well construction</subject><ispartof>Journal of chemical theory and computation, 2018-02, Vol.14 (2), p.499-511</ispartof><rights>Copyright © 2018 American Chemical Society</rights><rights>Copyright American Chemical Society Feb 13, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a433t-8c8c386d11525b0171fc0f4757250ae79c3d927f81645cf105848155a3cb3d433</citedby><cites>FETCH-LOGICAL-a433t-8c8c386d11525b0171fc0f4757250ae79c3d927f81645cf105848155a3cb3d433</cites><orcidid>0000-0003-0025-8987 ; 0000000300258987</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29316388$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1438113$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Albaugh, Alex</creatorcontrib><creatorcontrib>Head-Gordon, Teresa</creatorcontrib><creatorcontrib>Niklasson, Anders M. N</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><creatorcontrib>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><title>Higher-Order Extended Lagrangian Born–Oppenheimer Molecular Dynamics for Classical Polarizable Models</title><title>Journal of chemical theory and computation</title><addtitle>J. Chem. Theory Comput</addtitle><description>Generalized extended Lagrangian Born–Oppenheimer molecular dynamics (XLBOMD) methods provide a framework for fast iteration-free simulations of models that normally require expensive electronic ground state optimizations prior to the force evaluations at every time step. XLBOMD uses dynamically driven auxiliary degrees of freedom that fluctuate about a variationally optimized ground state of an approximate “shadow” potential which approximates the true reference potential. While the requirements for such shadow potentials are well understood, constructing such potentials in practice has previously been ad hoc, and in this work, we present a systematic development of XLBOMD shadow potentials that match the reference potential to any order. We also introduce a framework for combining friction-like dissipation for the auxiliary degrees of freedom with general-order integration, a combination that was not previously possible. These developments are demonstrated with a simple fluctuating charge model and point induced dipole polarization models.</description><subject>Computer simulation</subject><subject>Degrees of freedom</subject><subject>Ground state</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Iterative methods</subject><subject>Lagrangian function</subject><subject>Mathematics</subject><subject>Molecular chains</subject><subject>Molecular Dynamics</subject><subject>polarizable force fields</subject><subject>Shadows</subject><subject>Variation</subject><subject>Well construction</subject><issn>1549-9618</issn><issn>1549-9626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kcFuEzEURS1ERUthzwqNYNNFJ_iN7RnPEtKWVgoKC1hbjudN4shjB3tGoqz4B_6QL8EhaRdIrGzJ516_p0PIK6AzoBW80ybNtmY0s2ZFgXJ4Qs5A8LZs66p--ngHeUqep7SllDFesWfktGoZ1EzKM7K-tesNxnIZO4zF9fcRfYddsdDrqP3aal98CNH__vlruduh36AdMvYpODST07G4uvd6sCYVfYjF3OmUrNGu-Bzyo_2hVw4z3KFLL8hJr13Cl8fznHy9uf4yvy0Xy4938_eLUnPGxlIaaZisOwBRibxTA72hPW9EUwmqsWkN69qq6SXUXJgeqJBcghCamRXrcsU5eXPoDWm0Khk7otmY4D2aUQFnEmAPXRygXQzfJkyjGmwy6Jz2GKakoJWtaPIINKNv_0G3YYo-r6AqylnDa0brTNEDZWJIKWKvdtEOOt4roGpvSmVTam9KHU3lyOtj8bQasHsMPKjJwOUB-Bt9-PS_fX8A5E2egg</recordid><startdate>20180213</startdate><enddate>20180213</enddate><creator>Albaugh, Alex</creator><creator>Head-Gordon, Teresa</creator><creator>Niklasson, Anders M. N</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-0025-8987</orcidid><orcidid>https://orcid.org/0000000300258987</orcidid></search><sort><creationdate>20180213</creationdate><title>Higher-Order Extended Lagrangian Born–Oppenheimer Molecular Dynamics for Classical Polarizable Models</title><author>Albaugh, Alex ; Head-Gordon, Teresa ; Niklasson, Anders M. N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a433t-8c8c386d11525b0171fc0f4757250ae79c3d927f81645cf105848155a3cb3d433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Computer simulation</topic><topic>Degrees of freedom</topic><topic>Ground state</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Iterative methods</topic><topic>Lagrangian function</topic><topic>Mathematics</topic><topic>Molecular chains</topic><topic>Molecular Dynamics</topic><topic>polarizable force fields</topic><topic>Shadows</topic><topic>Variation</topic><topic>Well construction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Albaugh, Alex</creatorcontrib><creatorcontrib>Head-Gordon, Teresa</creatorcontrib><creatorcontrib>Niklasson, Anders M. N</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><creatorcontrib>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of chemical theory and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Albaugh, Alex</au><au>Head-Gordon, Teresa</au><au>Niklasson, Anders M. N</au><aucorp>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</aucorp><aucorp>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Higher-Order Extended Lagrangian Born–Oppenheimer Molecular Dynamics for Classical Polarizable Models</atitle><jtitle>Journal of chemical theory and computation</jtitle><addtitle>J. Chem. Theory Comput</addtitle><date>2018-02-13</date><risdate>2018</risdate><volume>14</volume><issue>2</issue><spage>499</spage><epage>511</epage><pages>499-511</pages><issn>1549-9618</issn><eissn>1549-9626</eissn><abstract>Generalized extended Lagrangian Born–Oppenheimer molecular dynamics (XLBOMD) methods provide a framework for fast iteration-free simulations of models that normally require expensive electronic ground state optimizations prior to the force evaluations at every time step. XLBOMD uses dynamically driven auxiliary degrees of freedom that fluctuate about a variationally optimized ground state of an approximate “shadow” potential which approximates the true reference potential. While the requirements for such shadow potentials are well understood, constructing such potentials in practice has previously been ad hoc, and in this work, we present a systematic development of XLBOMD shadow potentials that match the reference potential to any order. We also introduce a framework for combining friction-like dissipation for the auxiliary degrees of freedom with general-order integration, a combination that was not previously possible. These developments are demonstrated with a simple fluctuating charge model and point induced dipole polarization models.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29316388</pmid><doi>10.1021/acs.jctc.7b01041</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0025-8987</orcidid><orcidid>https://orcid.org/0000000300258987</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1549-9618
ispartof Journal of chemical theory and computation, 2018-02, Vol.14 (2), p.499-511
issn 1549-9618
1549-9626
language eng
recordid cdi_osti_scitechconnect_1438113
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Computer simulation
Degrees of freedom
Ground state
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Iterative methods
Lagrangian function
Mathematics
Molecular chains
Molecular Dynamics
polarizable force fields
Shadows
Variation
Well construction
title Higher-Order Extended Lagrangian Born–Oppenheimer Molecular Dynamics for Classical Polarizable Models
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T16%3A15%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Higher-Order%20Extended%20Lagrangian%20Born%E2%80%93Oppenheimer%20Molecular%20Dynamics%20for%20Classical%20Polarizable%20Models&rft.jtitle=Journal%20of%20chemical%20theory%20and%20computation&rft.au=Albaugh,%20Alex&rft.aucorp=Lawrence%20Berkeley%20National%20Lab.%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2018-02-13&rft.volume=14&rft.issue=2&rft.spage=499&rft.epage=511&rft.pages=499-511&rft.issn=1549-9618&rft.eissn=1549-9626&rft_id=info:doi/10.1021/acs.jctc.7b01041&rft_dat=%3Cproquest_osti_%3E1989571520%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a433t-8c8c386d11525b0171fc0f4757250ae79c3d927f81645cf105848155a3cb3d433%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2043746306&rft_id=info:pmid/29316388&rfr_iscdi=true