Loading…
Higher-Order Extended Lagrangian Born–Oppenheimer Molecular Dynamics for Classical Polarizable Models
Generalized extended Lagrangian Born–Oppenheimer molecular dynamics (XLBOMD) methods provide a framework for fast iteration-free simulations of models that normally require expensive electronic ground state optimizations prior to the force evaluations at every time step. XLBOMD uses dynamically driv...
Saved in:
Published in: | Journal of chemical theory and computation 2018-02, Vol.14 (2), p.499-511 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a433t-8c8c386d11525b0171fc0f4757250ae79c3d927f81645cf105848155a3cb3d433 |
---|---|
cites | cdi_FETCH-LOGICAL-a433t-8c8c386d11525b0171fc0f4757250ae79c3d927f81645cf105848155a3cb3d433 |
container_end_page | 511 |
container_issue | 2 |
container_start_page | 499 |
container_title | Journal of chemical theory and computation |
container_volume | 14 |
creator | Albaugh, Alex Head-Gordon, Teresa Niklasson, Anders M. N |
description | Generalized extended Lagrangian Born–Oppenheimer molecular dynamics (XLBOMD) methods provide a framework for fast iteration-free simulations of models that normally require expensive electronic ground state optimizations prior to the force evaluations at every time step. XLBOMD uses dynamically driven auxiliary degrees of freedom that fluctuate about a variationally optimized ground state of an approximate “shadow” potential which approximates the true reference potential. While the requirements for such shadow potentials are well understood, constructing such potentials in practice has previously been ad hoc, and in this work, we present a systematic development of XLBOMD shadow potentials that match the reference potential to any order. We also introduce a framework for combining friction-like dissipation for the auxiliary degrees of freedom with general-order integration, a combination that was not previously possible. These developments are demonstrated with a simple fluctuating charge model and point induced dipole polarization models. |
doi_str_mv | 10.1021/acs.jctc.7b01041 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1438113</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1989571520</sourcerecordid><originalsourceid>FETCH-LOGICAL-a433t-8c8c386d11525b0171fc0f4757250ae79c3d927f81645cf105848155a3cb3d433</originalsourceid><addsrcrecordid>eNp1kcFuEzEURS1ERUthzwqNYNNFJ_iN7RnPEtKWVgoKC1hbjudN4shjB3tGoqz4B_6QL8EhaRdIrGzJ516_p0PIK6AzoBW80ybNtmY0s2ZFgXJ4Qs5A8LZs66p--ngHeUqep7SllDFesWfktGoZ1EzKM7K-tesNxnIZO4zF9fcRfYddsdDrqP3aal98CNH__vlruduh36AdMvYpODST07G4uvd6sCYVfYjF3OmUrNGu-Bzyo_2hVw4z3KFLL8hJr13Cl8fznHy9uf4yvy0Xy4938_eLUnPGxlIaaZisOwBRibxTA72hPW9EUwmqsWkN69qq6SXUXJgeqJBcghCamRXrcsU5eXPoDWm0Khk7otmY4D2aUQFnEmAPXRygXQzfJkyjGmwy6Jz2GKakoJWtaPIINKNv_0G3YYo-r6AqylnDa0brTNEDZWJIKWKvdtEOOt4roGpvSmVTam9KHU3lyOtj8bQasHsMPKjJwOUB-Bt9-PS_fX8A5E2egg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2043746306</pqid></control><display><type>article</type><title>Higher-Order Extended Lagrangian Born–Oppenheimer Molecular Dynamics for Classical Polarizable Models</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Albaugh, Alex ; Head-Gordon, Teresa ; Niklasson, Anders M. N</creator><creatorcontrib>Albaugh, Alex ; Head-Gordon, Teresa ; Niklasson, Anders M. N ; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States) ; Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><description>Generalized extended Lagrangian Born–Oppenheimer molecular dynamics (XLBOMD) methods provide a framework for fast iteration-free simulations of models that normally require expensive electronic ground state optimizations prior to the force evaluations at every time step. XLBOMD uses dynamically driven auxiliary degrees of freedom that fluctuate about a variationally optimized ground state of an approximate “shadow” potential which approximates the true reference potential. While the requirements for such shadow potentials are well understood, constructing such potentials in practice has previously been ad hoc, and in this work, we present a systematic development of XLBOMD shadow potentials that match the reference potential to any order. We also introduce a framework for combining friction-like dissipation for the auxiliary degrees of freedom with general-order integration, a combination that was not previously possible. These developments are demonstrated with a simple fluctuating charge model and point induced dipole polarization models.</description><identifier>ISSN: 1549-9618</identifier><identifier>EISSN: 1549-9626</identifier><identifier>DOI: 10.1021/acs.jctc.7b01041</identifier><identifier>PMID: 29316388</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Computer simulation ; Degrees of freedom ; Ground state ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Iterative methods ; Lagrangian function ; Mathematics ; Molecular chains ; Molecular Dynamics ; polarizable force fields ; Shadows ; Variation ; Well construction</subject><ispartof>Journal of chemical theory and computation, 2018-02, Vol.14 (2), p.499-511</ispartof><rights>Copyright © 2018 American Chemical Society</rights><rights>Copyright American Chemical Society Feb 13, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a433t-8c8c386d11525b0171fc0f4757250ae79c3d927f81645cf105848155a3cb3d433</citedby><cites>FETCH-LOGICAL-a433t-8c8c386d11525b0171fc0f4757250ae79c3d927f81645cf105848155a3cb3d433</cites><orcidid>0000-0003-0025-8987 ; 0000000300258987</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29316388$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1438113$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Albaugh, Alex</creatorcontrib><creatorcontrib>Head-Gordon, Teresa</creatorcontrib><creatorcontrib>Niklasson, Anders M. N</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><creatorcontrib>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><title>Higher-Order Extended Lagrangian Born–Oppenheimer Molecular Dynamics for Classical Polarizable Models</title><title>Journal of chemical theory and computation</title><addtitle>J. Chem. Theory Comput</addtitle><description>Generalized extended Lagrangian Born–Oppenheimer molecular dynamics (XLBOMD) methods provide a framework for fast iteration-free simulations of models that normally require expensive electronic ground state optimizations prior to the force evaluations at every time step. XLBOMD uses dynamically driven auxiliary degrees of freedom that fluctuate about a variationally optimized ground state of an approximate “shadow” potential which approximates the true reference potential. While the requirements for such shadow potentials are well understood, constructing such potentials in practice has previously been ad hoc, and in this work, we present a systematic development of XLBOMD shadow potentials that match the reference potential to any order. We also introduce a framework for combining friction-like dissipation for the auxiliary degrees of freedom with general-order integration, a combination that was not previously possible. These developments are demonstrated with a simple fluctuating charge model and point induced dipole polarization models.</description><subject>Computer simulation</subject><subject>Degrees of freedom</subject><subject>Ground state</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Iterative methods</subject><subject>Lagrangian function</subject><subject>Mathematics</subject><subject>Molecular chains</subject><subject>Molecular Dynamics</subject><subject>polarizable force fields</subject><subject>Shadows</subject><subject>Variation</subject><subject>Well construction</subject><issn>1549-9618</issn><issn>1549-9626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kcFuEzEURS1ERUthzwqNYNNFJ_iN7RnPEtKWVgoKC1hbjudN4shjB3tGoqz4B_6QL8EhaRdIrGzJ516_p0PIK6AzoBW80ybNtmY0s2ZFgXJ4Qs5A8LZs66p--ngHeUqep7SllDFesWfktGoZ1EzKM7K-tesNxnIZO4zF9fcRfYddsdDrqP3aal98CNH__vlruduh36AdMvYpODST07G4uvd6sCYVfYjF3OmUrNGu-Bzyo_2hVw4z3KFLL8hJr13Cl8fznHy9uf4yvy0Xy4938_eLUnPGxlIaaZisOwBRibxTA72hPW9EUwmqsWkN69qq6SXUXJgeqJBcghCamRXrcsU5eXPoDWm0Khk7otmY4D2aUQFnEmAPXRygXQzfJkyjGmwy6Jz2GKakoJWtaPIINKNv_0G3YYo-r6AqylnDa0brTNEDZWJIKWKvdtEOOt4roGpvSmVTam9KHU3lyOtj8bQasHsMPKjJwOUB-Bt9-PS_fX8A5E2egg</recordid><startdate>20180213</startdate><enddate>20180213</enddate><creator>Albaugh, Alex</creator><creator>Head-Gordon, Teresa</creator><creator>Niklasson, Anders M. N</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-0025-8987</orcidid><orcidid>https://orcid.org/0000000300258987</orcidid></search><sort><creationdate>20180213</creationdate><title>Higher-Order Extended Lagrangian Born–Oppenheimer Molecular Dynamics for Classical Polarizable Models</title><author>Albaugh, Alex ; Head-Gordon, Teresa ; Niklasson, Anders M. N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a433t-8c8c386d11525b0171fc0f4757250ae79c3d927f81645cf105848155a3cb3d433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Computer simulation</topic><topic>Degrees of freedom</topic><topic>Ground state</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Iterative methods</topic><topic>Lagrangian function</topic><topic>Mathematics</topic><topic>Molecular chains</topic><topic>Molecular Dynamics</topic><topic>polarizable force fields</topic><topic>Shadows</topic><topic>Variation</topic><topic>Well construction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Albaugh, Alex</creatorcontrib><creatorcontrib>Head-Gordon, Teresa</creatorcontrib><creatorcontrib>Niklasson, Anders M. N</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><creatorcontrib>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of chemical theory and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Albaugh, Alex</au><au>Head-Gordon, Teresa</au><au>Niklasson, Anders M. N</au><aucorp>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</aucorp><aucorp>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Higher-Order Extended Lagrangian Born–Oppenheimer Molecular Dynamics for Classical Polarizable Models</atitle><jtitle>Journal of chemical theory and computation</jtitle><addtitle>J. Chem. Theory Comput</addtitle><date>2018-02-13</date><risdate>2018</risdate><volume>14</volume><issue>2</issue><spage>499</spage><epage>511</epage><pages>499-511</pages><issn>1549-9618</issn><eissn>1549-9626</eissn><abstract>Generalized extended Lagrangian Born–Oppenheimer molecular dynamics (XLBOMD) methods provide a framework for fast iteration-free simulations of models that normally require expensive electronic ground state optimizations prior to the force evaluations at every time step. XLBOMD uses dynamically driven auxiliary degrees of freedom that fluctuate about a variationally optimized ground state of an approximate “shadow” potential which approximates the true reference potential. While the requirements for such shadow potentials are well understood, constructing such potentials in practice has previously been ad hoc, and in this work, we present a systematic development of XLBOMD shadow potentials that match the reference potential to any order. We also introduce a framework for combining friction-like dissipation for the auxiliary degrees of freedom with general-order integration, a combination that was not previously possible. These developments are demonstrated with a simple fluctuating charge model and point induced dipole polarization models.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29316388</pmid><doi>10.1021/acs.jctc.7b01041</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0025-8987</orcidid><orcidid>https://orcid.org/0000000300258987</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-9618 |
ispartof | Journal of chemical theory and computation, 2018-02, Vol.14 (2), p.499-511 |
issn | 1549-9618 1549-9626 |
language | eng |
recordid | cdi_osti_scitechconnect_1438113 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Computer simulation Degrees of freedom Ground state INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY Iterative methods Lagrangian function Mathematics Molecular chains Molecular Dynamics polarizable force fields Shadows Variation Well construction |
title | Higher-Order Extended Lagrangian Born–Oppenheimer Molecular Dynamics for Classical Polarizable Models |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T16%3A15%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Higher-Order%20Extended%20Lagrangian%20Born%E2%80%93Oppenheimer%20Molecular%20Dynamics%20for%20Classical%20Polarizable%20Models&rft.jtitle=Journal%20of%20chemical%20theory%20and%20computation&rft.au=Albaugh,%20Alex&rft.aucorp=Lawrence%20Berkeley%20National%20Lab.%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2018-02-13&rft.volume=14&rft.issue=2&rft.spage=499&rft.epage=511&rft.pages=499-511&rft.issn=1549-9618&rft.eissn=1549-9626&rft_id=info:doi/10.1021/acs.jctc.7b01041&rft_dat=%3Cproquest_osti_%3E1989571520%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a433t-8c8c386d11525b0171fc0f4757250ae79c3d927f81645cf105848155a3cb3d433%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2043746306&rft_id=info:pmid/29316388&rfr_iscdi=true |