Loading…
Stackable bipolar pouch cells with corrosion-resistant current collectors enable high-power aqueous electrochemical energy storage
A critical bottleneck in the development of aqueous electrochemical energy storage systems is the lack of viable complete cell designs. We report a metal-free, bipolar pouch cell designed with carbon black/polyethylene composite film (CBPE) current collectors as a practical cell architecture. The li...
Saved in:
Published in: | Energy & environmental science 2018-10, Vol.11 (10), p.2865-2875 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c402t-3676d79ff0eca44d41ae9c00f0546010a5a77807ed0f04adf42785f9f884435b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c402t-3676d79ff0eca44d41ae9c00f0546010a5a77807ed0f04adf42785f9f884435b3 |
container_end_page | 2875 |
container_issue | 10 |
container_start_page | 2865 |
container_title | Energy & environmental science |
container_volume | 11 |
creator | Evanko, Brian Yoo, Seung Joon Lipton, Jason Chun, Sang-Eun Moskovits, Martin Ji, Xiulei Boettcher, Shannon W. Stucky, Galen D. |
description | A critical bottleneck in the development of aqueous electrochemical energy storage systems is the lack of viable complete cell designs. We report a metal-free, bipolar pouch cell designed with carbon black/polyethylene composite film (CBPE) current collectors as a practical cell architecture. The light-weight, corrosion-resistant CBPE provides stable operation in a variety of aqueous electrolytes over a ∼2.5 V potential range. Because CBPE is heat-sealable, it serves simultaneously as both the pouch cell packaging and seal in addition to its use as a current collector. Although this non-metallic composite has a low electrical conductivity relative to metal foils, current travels only a short distance in the through-plane direction of the current collector in the bipolar cell configuration. This shorter path length lowers the effective electrical resistance, making the design suitable for high-power applications. We test the cell architecture using an aqueous ZnBr
2
battery chemistry and incorporate tetrabutylammonium cations to improve the intrinsic low Coulombic efficiency and fast self-discharge of non-flow ZnBr
2
cells. These devices demonstrate a cell-level energy density of 50 W h L
−1
at a 10C rate (0.5 kW L
−1
), with less than 1% capacity loss over 500 cycles. A large-area (>6 cm
2
) 4-cell stack is built to illustrate that the pouch cells are scalable to practical dimensions and stackable without sacrificing performance. The device operates in the range of 6–7 V and has an internal self-balancing mechanism that prevents any individual cell in the stack from overcharging. The results thus demonstrate both a conceptually new cell architecture that is broadly applicable to many aqueous electrolyte chemistries and a specific high-performance example thereof. |
doi_str_mv | 10.1039/C8EE00546J |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1454300</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2117539588</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-3676d79ff0eca44d41ae9c00f0546010a5a77807ed0f04adf42785f9f884435b3</originalsourceid><addsrcrecordid>eNpFkU1PwzAMhiMEEuPjwi-o4IZUcNqkaY9oGl-axAE4R1nmrhldU5JU0678clIG4uRX9mPrtU3IBYUbCnl1Oy1nMwDOiucDMqGCs5QLKA7_dFFlx-TE-zVAkYGoJuTrNSj9oRYtJgvT21a5pLeDbhKNbeuTrQlRWuesN7ZLHXrjg-pCogfncIy2bVEH63yC3c-YxqyatLdbdIn6HNAOsTIizuoGN0arNpLoVrvExza1wjNyVKvW4_lvPCXv97O36WM6f3l4mt7NU80gC2leiGIpqroG1IqxJaMKKw1Qj-sCBcWVECUIXMYUU8uaZaLkdVWXJWM5X-Sn5HI_1_pgpNcmoG607bpoTlLGWQ4Qoas91Dsb3fsg13ZwXfQlMxqPmFe8LCN1vad0PIx3WMvemY1yO0lBjo-Q_4_IvwFSyn02</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117539588</pqid></control><display><type>article</type><title>Stackable bipolar pouch cells with corrosion-resistant current collectors enable high-power aqueous electrochemical energy storage</title><source>Royal Society of Chemistry</source><creator>Evanko, Brian ; Yoo, Seung Joon ; Lipton, Jason ; Chun, Sang-Eun ; Moskovits, Martin ; Ji, Xiulei ; Boettcher, Shannon W. ; Stucky, Galen D.</creator><creatorcontrib>Evanko, Brian ; Yoo, Seung Joon ; Lipton, Jason ; Chun, Sang-Eun ; Moskovits, Martin ; Ji, Xiulei ; Boettcher, Shannon W. ; Stucky, Galen D.</creatorcontrib><description>A critical bottleneck in the development of aqueous electrochemical energy storage systems is the lack of viable complete cell designs. We report a metal-free, bipolar pouch cell designed with carbon black/polyethylene composite film (CBPE) current collectors as a practical cell architecture. The light-weight, corrosion-resistant CBPE provides stable operation in a variety of aqueous electrolytes over a ∼2.5 V potential range. Because CBPE is heat-sealable, it serves simultaneously as both the pouch cell packaging and seal in addition to its use as a current collector. Although this non-metallic composite has a low electrical conductivity relative to metal foils, current travels only a short distance in the through-plane direction of the current collector in the bipolar cell configuration. This shorter path length lowers the effective electrical resistance, making the design suitable for high-power applications. We test the cell architecture using an aqueous ZnBr
2
battery chemistry and incorporate tetrabutylammonium cations to improve the intrinsic low Coulombic efficiency and fast self-discharge of non-flow ZnBr
2
cells. These devices demonstrate a cell-level energy density of 50 W h L
−1
at a 10C rate (0.5 kW L
−1
), with less than 1% capacity loss over 500 cycles. A large-area (>6 cm
2
) 4-cell stack is built to illustrate that the pouch cells are scalable to practical dimensions and stackable without sacrificing performance. The device operates in the range of 6–7 V and has an internal self-balancing mechanism that prevents any individual cell in the stack from overcharging. The results thus demonstrate both a conceptually new cell architecture that is broadly applicable to many aqueous electrolyte chemistries and a specific high-performance example thereof.</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/C8EE00546J</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Accumulators ; Aqueous electrolytes ; Architecture ; Batteries ; Bipolar cells ; Black carbon ; Carbon black ; Cations ; Collectors ; Corrosion ; Corrosion cell ; Corrosion resistance ; Cost analysis ; Design ; Electrical conductivity ; Electrical resistivity ; Electrochemistry ; Electrolytic cells ; Energy storage ; Flux density ; Foils ; Metals ; Organic chemistry ; Packaging ; Polyethylene ; Polyethylenes ; Storage systems ; Test procedures ; Weight reduction</subject><ispartof>Energy & environmental science, 2018-10, Vol.11 (10), p.2865-2875</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-3676d79ff0eca44d41ae9c00f0546010a5a77807ed0f04adf42785f9f884435b3</citedby><cites>FETCH-LOGICAL-c402t-3676d79ff0eca44d41ae9c00f0546010a5a77807ed0f04adf42785f9f884435b3</cites><orcidid>0000-0002-0837-5961 ; 0000-0002-6797-1907 ; 0000-0002-1531-7700 ; 0000-0001-8971-9123 ; 0000-0002-4649-9594 ; 0000-0003-1292-2005 ; 0000000312922005 ; 0000000208375961 ; 0000000189719123 ; 0000000215317700 ; 0000000246499594 ; 0000000267971907</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1454300$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Evanko, Brian</creatorcontrib><creatorcontrib>Yoo, Seung Joon</creatorcontrib><creatorcontrib>Lipton, Jason</creatorcontrib><creatorcontrib>Chun, Sang-Eun</creatorcontrib><creatorcontrib>Moskovits, Martin</creatorcontrib><creatorcontrib>Ji, Xiulei</creatorcontrib><creatorcontrib>Boettcher, Shannon W.</creatorcontrib><creatorcontrib>Stucky, Galen D.</creatorcontrib><title>Stackable bipolar pouch cells with corrosion-resistant current collectors enable high-power aqueous electrochemical energy storage</title><title>Energy & environmental science</title><description>A critical bottleneck in the development of aqueous electrochemical energy storage systems is the lack of viable complete cell designs. We report a metal-free, bipolar pouch cell designed with carbon black/polyethylene composite film (CBPE) current collectors as a practical cell architecture. The light-weight, corrosion-resistant CBPE provides stable operation in a variety of aqueous electrolytes over a ∼2.5 V potential range. Because CBPE is heat-sealable, it serves simultaneously as both the pouch cell packaging and seal in addition to its use as a current collector. Although this non-metallic composite has a low electrical conductivity relative to metal foils, current travels only a short distance in the through-plane direction of the current collector in the bipolar cell configuration. This shorter path length lowers the effective electrical resistance, making the design suitable for high-power applications. We test the cell architecture using an aqueous ZnBr
2
battery chemistry and incorporate tetrabutylammonium cations to improve the intrinsic low Coulombic efficiency and fast self-discharge of non-flow ZnBr
2
cells. These devices demonstrate a cell-level energy density of 50 W h L
−1
at a 10C rate (0.5 kW L
−1
), with less than 1% capacity loss over 500 cycles. A large-area (>6 cm
2
) 4-cell stack is built to illustrate that the pouch cells are scalable to practical dimensions and stackable without sacrificing performance. The device operates in the range of 6–7 V and has an internal self-balancing mechanism that prevents any individual cell in the stack from overcharging. The results thus demonstrate both a conceptually new cell architecture that is broadly applicable to many aqueous electrolyte chemistries and a specific high-performance example thereof.</description><subject>Accumulators</subject><subject>Aqueous electrolytes</subject><subject>Architecture</subject><subject>Batteries</subject><subject>Bipolar cells</subject><subject>Black carbon</subject><subject>Carbon black</subject><subject>Cations</subject><subject>Collectors</subject><subject>Corrosion</subject><subject>Corrosion cell</subject><subject>Corrosion resistance</subject><subject>Cost analysis</subject><subject>Design</subject><subject>Electrical conductivity</subject><subject>Electrical resistivity</subject><subject>Electrochemistry</subject><subject>Electrolytic cells</subject><subject>Energy storage</subject><subject>Flux density</subject><subject>Foils</subject><subject>Metals</subject><subject>Organic chemistry</subject><subject>Packaging</subject><subject>Polyethylene</subject><subject>Polyethylenes</subject><subject>Storage systems</subject><subject>Test procedures</subject><subject>Weight reduction</subject><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpFkU1PwzAMhiMEEuPjwi-o4IZUcNqkaY9oGl-axAE4R1nmrhldU5JU0678clIG4uRX9mPrtU3IBYUbCnl1Oy1nMwDOiucDMqGCs5QLKA7_dFFlx-TE-zVAkYGoJuTrNSj9oRYtJgvT21a5pLeDbhKNbeuTrQlRWuesN7ZLHXrjg-pCogfncIy2bVEH63yC3c-YxqyatLdbdIn6HNAOsTIizuoGN0arNpLoVrvExza1wjNyVKvW4_lvPCXv97O36WM6f3l4mt7NU80gC2leiGIpqroG1IqxJaMKKw1Qj-sCBcWVECUIXMYUU8uaZaLkdVWXJWM5X-Sn5HI_1_pgpNcmoG607bpoTlLGWQ4Qoas91Dsb3fsg13ZwXfQlMxqPmFe8LCN1vad0PIx3WMvemY1yO0lBjo-Q_4_IvwFSyn02</recordid><startdate>20181010</startdate><enddate>20181010</enddate><creator>Evanko, Brian</creator><creator>Yoo, Seung Joon</creator><creator>Lipton, Jason</creator><creator>Chun, Sang-Eun</creator><creator>Moskovits, Martin</creator><creator>Ji, Xiulei</creator><creator>Boettcher, Shannon W.</creator><creator>Stucky, Galen D.</creator><general>Royal Society of Chemistry</general><general>Royal Society of Chemistry (RSC)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-0837-5961</orcidid><orcidid>https://orcid.org/0000-0002-6797-1907</orcidid><orcidid>https://orcid.org/0000-0002-1531-7700</orcidid><orcidid>https://orcid.org/0000-0001-8971-9123</orcidid><orcidid>https://orcid.org/0000-0002-4649-9594</orcidid><orcidid>https://orcid.org/0000-0003-1292-2005</orcidid><orcidid>https://orcid.org/0000000312922005</orcidid><orcidid>https://orcid.org/0000000208375961</orcidid><orcidid>https://orcid.org/0000000189719123</orcidid><orcidid>https://orcid.org/0000000215317700</orcidid><orcidid>https://orcid.org/0000000246499594</orcidid><orcidid>https://orcid.org/0000000267971907</orcidid></search><sort><creationdate>20181010</creationdate><title>Stackable bipolar pouch cells with corrosion-resistant current collectors enable high-power aqueous electrochemical energy storage</title><author>Evanko, Brian ; Yoo, Seung Joon ; Lipton, Jason ; Chun, Sang-Eun ; Moskovits, Martin ; Ji, Xiulei ; Boettcher, Shannon W. ; Stucky, Galen D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-3676d79ff0eca44d41ae9c00f0546010a5a77807ed0f04adf42785f9f884435b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Accumulators</topic><topic>Aqueous electrolytes</topic><topic>Architecture</topic><topic>Batteries</topic><topic>Bipolar cells</topic><topic>Black carbon</topic><topic>Carbon black</topic><topic>Cations</topic><topic>Collectors</topic><topic>Corrosion</topic><topic>Corrosion cell</topic><topic>Corrosion resistance</topic><topic>Cost analysis</topic><topic>Design</topic><topic>Electrical conductivity</topic><topic>Electrical resistivity</topic><topic>Electrochemistry</topic><topic>Electrolytic cells</topic><topic>Energy storage</topic><topic>Flux density</topic><topic>Foils</topic><topic>Metals</topic><topic>Organic chemistry</topic><topic>Packaging</topic><topic>Polyethylene</topic><topic>Polyethylenes</topic><topic>Storage systems</topic><topic>Test procedures</topic><topic>Weight reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Evanko, Brian</creatorcontrib><creatorcontrib>Yoo, Seung Joon</creatorcontrib><creatorcontrib>Lipton, Jason</creatorcontrib><creatorcontrib>Chun, Sang-Eun</creatorcontrib><creatorcontrib>Moskovits, Martin</creatorcontrib><creatorcontrib>Ji, Xiulei</creatorcontrib><creatorcontrib>Boettcher, Shannon W.</creatorcontrib><creatorcontrib>Stucky, Galen D.</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>OSTI.GOV</collection><jtitle>Energy & environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Evanko, Brian</au><au>Yoo, Seung Joon</au><au>Lipton, Jason</au><au>Chun, Sang-Eun</au><au>Moskovits, Martin</au><au>Ji, Xiulei</au><au>Boettcher, Shannon W.</au><au>Stucky, Galen D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stackable bipolar pouch cells with corrosion-resistant current collectors enable high-power aqueous electrochemical energy storage</atitle><jtitle>Energy & environmental science</jtitle><date>2018-10-10</date><risdate>2018</risdate><volume>11</volume><issue>10</issue><spage>2865</spage><epage>2875</epage><pages>2865-2875</pages><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>A critical bottleneck in the development of aqueous electrochemical energy storage systems is the lack of viable complete cell designs. We report a metal-free, bipolar pouch cell designed with carbon black/polyethylene composite film (CBPE) current collectors as a practical cell architecture. The light-weight, corrosion-resistant CBPE provides stable operation in a variety of aqueous electrolytes over a ∼2.5 V potential range. Because CBPE is heat-sealable, it serves simultaneously as both the pouch cell packaging and seal in addition to its use as a current collector. Although this non-metallic composite has a low electrical conductivity relative to metal foils, current travels only a short distance in the through-plane direction of the current collector in the bipolar cell configuration. This shorter path length lowers the effective electrical resistance, making the design suitable for high-power applications. We test the cell architecture using an aqueous ZnBr
2
battery chemistry and incorporate tetrabutylammonium cations to improve the intrinsic low Coulombic efficiency and fast self-discharge of non-flow ZnBr
2
cells. These devices demonstrate a cell-level energy density of 50 W h L
−1
at a 10C rate (0.5 kW L
−1
), with less than 1% capacity loss over 500 cycles. A large-area (>6 cm
2
) 4-cell stack is built to illustrate that the pouch cells are scalable to practical dimensions and stackable without sacrificing performance. The device operates in the range of 6–7 V and has an internal self-balancing mechanism that prevents any individual cell in the stack from overcharging. The results thus demonstrate both a conceptually new cell architecture that is broadly applicable to many aqueous electrolyte chemistries and a specific high-performance example thereof.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/C8EE00546J</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-0837-5961</orcidid><orcidid>https://orcid.org/0000-0002-6797-1907</orcidid><orcidid>https://orcid.org/0000-0002-1531-7700</orcidid><orcidid>https://orcid.org/0000-0001-8971-9123</orcidid><orcidid>https://orcid.org/0000-0002-4649-9594</orcidid><orcidid>https://orcid.org/0000-0003-1292-2005</orcidid><orcidid>https://orcid.org/0000000312922005</orcidid><orcidid>https://orcid.org/0000000208375961</orcidid><orcidid>https://orcid.org/0000000189719123</orcidid><orcidid>https://orcid.org/0000000215317700</orcidid><orcidid>https://orcid.org/0000000246499594</orcidid><orcidid>https://orcid.org/0000000267971907</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1754-5692 |
ispartof | Energy & environmental science, 2018-10, Vol.11 (10), p.2865-2875 |
issn | 1754-5692 1754-5706 |
language | eng |
recordid | cdi_osti_scitechconnect_1454300 |
source | Royal Society of Chemistry |
subjects | Accumulators Aqueous electrolytes Architecture Batteries Bipolar cells Black carbon Carbon black Cations Collectors Corrosion Corrosion cell Corrosion resistance Cost analysis Design Electrical conductivity Electrical resistivity Electrochemistry Electrolytic cells Energy storage Flux density Foils Metals Organic chemistry Packaging Polyethylene Polyethylenes Storage systems Test procedures Weight reduction |
title | Stackable bipolar pouch cells with corrosion-resistant current collectors enable high-power aqueous electrochemical energy storage |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T13%3A48%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stackable%20bipolar%20pouch%20cells%20with%20corrosion-resistant%20current%20collectors%20enable%20high-power%20aqueous%20electrochemical%20energy%20storage&rft.jtitle=Energy%20&%20environmental%20science&rft.au=Evanko,%20Brian&rft.date=2018-10-10&rft.volume=11&rft.issue=10&rft.spage=2865&rft.epage=2875&rft.pages=2865-2875&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/C8EE00546J&rft_dat=%3Cproquest_osti_%3E2117539588%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c402t-3676d79ff0eca44d41ae9c00f0546010a5a77807ed0f04adf42785f9f884435b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2117539588&rft_id=info:pmid/&rfr_iscdi=true |