Role of Biopolymers in the Deactivation of ZSM‑5 during Catalytic Fast Pyrolysis of Biomass

Rapid coking and catalyst deactivation are significant problems during catalytic fast pyrolysis of biomass. Cellulose and lignin were found to coke via different mechanisms, resulting in two distinct types of catalyst deactivation. Lignin pyrolysis vapors cause coke formation mainly by external surf...

Full description

Saved in:
Bibliographic Details
Published in:ACS sustainable chemistry & engineering 2018-08, Vol.6 (8), p.10030-10038
Main Authors: Stanton, Alexander R, Iisa, Kristiina, Mukarakate, Calvin, Nimlos, Mark R
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Rapid coking and catalyst deactivation are significant problems during catalytic fast pyrolysis of biomass. Cellulose and lignin were found to coke via different mechanisms, resulting in two distinct types of catalyst deactivation. Lignin pyrolysis vapors cause coke formation mainly by external surface coking without limiting access to the active acid sites in the microchannels. Lignin deactivates the surface cracking capability of ZSM-5, resulting in unreacted primary vapors passing through while maintaining aromatization reactions. Cellulose pyrolysis vapors generate coke mainly as an extension of the aromatization reactions on the acid sites, which leads to occlusion of the internal acid sites. This deactivates the upgrading reactions, resulting in decreased aromatics formation, generation of oxygenated intermediates and increased alkylation of 1-ring aromatics and reduced multi-ring aromatics selectivity. The results indicate that the decrease in aromatics formation observed during catalytic pyrolysis of biomass is primarily caused by the coke generated from the polysaccharide components.
ISSN:2168-0485
2168-0485
DOI:10.1021/acssuschemeng.8b01333