Loading…
Structural Phase Transformation in Strained Monolayer MoWSe2 Alloy
Two-dimensional (2D) materials exhibit different mechanical properties from their bulk counterparts owing to their monolayer atomic thickness. Here, we have examined the mechanical behavior of 2D molybdenum tungsten diselenide (MoWSe2) precipitation alloy grown using chemical vapor deposition and co...
Saved in:
Published in: | ACS nano 2018-04, Vol.12 (4), p.3468-3476 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 3476 |
container_issue | 4 |
container_start_page | 3468 |
container_title | ACS nano |
container_volume | 12 |
creator | Apte, Amey Kochat, Vidya Rajak, Pankaj Krishnamoorthy, Aravind Manimunda, Praveena Hachtel, Jordan A Idrobo, Juan Carlos Syed Amanulla, Syed Asif Vashishta, Priya Nakano, Aiichiro Kalia, Rajiv K Tiwary, Chandra Sekhar Ajayan, Pulickel M |
description | Two-dimensional (2D) materials exhibit different mechanical properties from their bulk counterparts owing to their monolayer atomic thickness. Here, we have examined the mechanical behavior of 2D molybdenum tungsten diselenide (MoWSe2) precipitation alloy grown using chemical vapor deposition and composed of numerous nanoscopic MoSe2 and WSe2 regions. Applying a bending strain blue-shifted the MoSe2 and WSe2 A1g Raman modes with the stress concentrated near the precipitate interfaces predominantly affecting the WSe2 modes. In situ local Raman measurements suggested that the crack propagated primarily thorough MoSe2-rich regions in the monolayer alloy. Molecular dynamics (MD) simulations were performed to study crack propagation in an MoSe2 monolayer containing nanoscopic WSe2 regions akin to the experiment. Raman spectra calculated from MD trajectories of crack propagation confirmed the emergence of intermediate peaks in the strained monolayer alloy, mirroring experimental results. The simulations revealed that the stress buildup around the crack tip caused an irreversible structural transformation from the 2H to 1T phase both in the MoSe2 matrix and WSe2 patches. This was corroborated by high-angle annular dark-field images. Crack branching and subsequent healing of a crack branch were also observed in WSe2, indicating the increased toughness and crack propagation resistance of the alloyed 2D MoWSe2 over the unalloyed counterparts. |
doi_str_mv | 10.1021/acsnano.8b00248 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1460185</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2008884826</sourcerecordid><originalsourceid>FETCH-LOGICAL-a292t-271d572a2e8a6443b565d8b01fae3143f0d8494f91326289815ec8c8909ebf623</originalsourceid><addsrcrecordid>eNo9kEtLAzEYRYMoWKtrt4MrQabmPV-WtdQHVBRa0V1IMxk6ZZroJLPovzfS4urexeFyOQhdEzwhmJJ7Y6M3PkxgjTHlcIJGRDFZYpBfp_9dkHN0EeMWY1FBJUfoYZn6waahN13xvjHRFave-NiEfmdSG3zR-iIjpvWuLl6DD53Zuz63z6WjxbTrwv4SnTWmi-7qmGP08ThfzZ7LxdvTy2y6KA1VNJW0IrWoqKEOjOScrYUUdT5LGuMY4azBNXDFG0UYlRQUEOEsWFBYuXUjKRujm8NuiKnV0bbJ2Y0N3jubNOESExAZuj1A3334GVxMetdG67rOeBeGqCnGAMCByozeHdBsTm_D0Pv8XhOs_3Tqo0591Ml-AQyuaD4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2008884826</pqid></control><display><type>article</type><title>Structural Phase Transformation in Strained Monolayer MoWSe2 Alloy</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Apte, Amey ; Kochat, Vidya ; Rajak, Pankaj ; Krishnamoorthy, Aravind ; Manimunda, Praveena ; Hachtel, Jordan A ; Idrobo, Juan Carlos ; Syed Amanulla, Syed Asif ; Vashishta, Priya ; Nakano, Aiichiro ; Kalia, Rajiv K ; Tiwary, Chandra Sekhar ; Ajayan, Pulickel M</creator><creatorcontrib>Apte, Amey ; Kochat, Vidya ; Rajak, Pankaj ; Krishnamoorthy, Aravind ; Manimunda, Praveena ; Hachtel, Jordan A ; Idrobo, Juan Carlos ; Syed Amanulla, Syed Asif ; Vashishta, Priya ; Nakano, Aiichiro ; Kalia, Rajiv K ; Tiwary, Chandra Sekhar ; Ajayan, Pulickel M ; Univ. of Southern California, Los Angeles, CA (United States) ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>Two-dimensional (2D) materials exhibit different mechanical properties from their bulk counterparts owing to their monolayer atomic thickness. Here, we have examined the mechanical behavior of 2D molybdenum tungsten diselenide (MoWSe2) precipitation alloy grown using chemical vapor deposition and composed of numerous nanoscopic MoSe2 and WSe2 regions. Applying a bending strain blue-shifted the MoSe2 and WSe2 A1g Raman modes with the stress concentrated near the precipitate interfaces predominantly affecting the WSe2 modes. In situ local Raman measurements suggested that the crack propagated primarily thorough MoSe2-rich regions in the monolayer alloy. Molecular dynamics (MD) simulations were performed to study crack propagation in an MoSe2 monolayer containing nanoscopic WSe2 regions akin to the experiment. Raman spectra calculated from MD trajectories of crack propagation confirmed the emergence of intermediate peaks in the strained monolayer alloy, mirroring experimental results. The simulations revealed that the stress buildup around the crack tip caused an irreversible structural transformation from the 2H to 1T phase both in the MoSe2 matrix and WSe2 patches. This was corroborated by high-angle annular dark-field images. Crack branching and subsequent healing of a crack branch were also observed in WSe2, indicating the increased toughness and crack propagation resistance of the alloyed 2D MoWSe2 over the unalloyed counterparts.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.8b00248</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>MATERIALS SCIENCE ; mechanical straining ; molecular dynamics simulations ; Raman spectroscopy ; transition-metal dichalcogenide ; two-dimensional materials</subject><ispartof>ACS nano, 2018-04, Vol.12 (4), p.3468-3476</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-1851-4777 ; 0000-0002-6144-3732 ; 0000-0001-6778-2471 ; 0000-0003-4683-429X ; 0000-0003-3228-3896 ; 0000-0001-9760-9768 ; 0000000197609768 ; 0000000261443732 ; 000000034683429X ; 0000000332283896 ; 0000000167782471 ; 0000000218514777</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1460185$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Apte, Amey</creatorcontrib><creatorcontrib>Kochat, Vidya</creatorcontrib><creatorcontrib>Rajak, Pankaj</creatorcontrib><creatorcontrib>Krishnamoorthy, Aravind</creatorcontrib><creatorcontrib>Manimunda, Praveena</creatorcontrib><creatorcontrib>Hachtel, Jordan A</creatorcontrib><creatorcontrib>Idrobo, Juan Carlos</creatorcontrib><creatorcontrib>Syed Amanulla, Syed Asif</creatorcontrib><creatorcontrib>Vashishta, Priya</creatorcontrib><creatorcontrib>Nakano, Aiichiro</creatorcontrib><creatorcontrib>Kalia, Rajiv K</creatorcontrib><creatorcontrib>Tiwary, Chandra Sekhar</creatorcontrib><creatorcontrib>Ajayan, Pulickel M</creatorcontrib><creatorcontrib>Univ. of Southern California, Los Angeles, CA (United States)</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Structural Phase Transformation in Strained Monolayer MoWSe2 Alloy</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Two-dimensional (2D) materials exhibit different mechanical properties from their bulk counterparts owing to their monolayer atomic thickness. Here, we have examined the mechanical behavior of 2D molybdenum tungsten diselenide (MoWSe2) precipitation alloy grown using chemical vapor deposition and composed of numerous nanoscopic MoSe2 and WSe2 regions. Applying a bending strain blue-shifted the MoSe2 and WSe2 A1g Raman modes with the stress concentrated near the precipitate interfaces predominantly affecting the WSe2 modes. In situ local Raman measurements suggested that the crack propagated primarily thorough MoSe2-rich regions in the monolayer alloy. Molecular dynamics (MD) simulations were performed to study crack propagation in an MoSe2 monolayer containing nanoscopic WSe2 regions akin to the experiment. Raman spectra calculated from MD trajectories of crack propagation confirmed the emergence of intermediate peaks in the strained monolayer alloy, mirroring experimental results. The simulations revealed that the stress buildup around the crack tip caused an irreversible structural transformation from the 2H to 1T phase both in the MoSe2 matrix and WSe2 patches. This was corroborated by high-angle annular dark-field images. Crack branching and subsequent healing of a crack branch were also observed in WSe2, indicating the increased toughness and crack propagation resistance of the alloyed 2D MoWSe2 over the unalloyed counterparts.</description><subject>MATERIALS SCIENCE</subject><subject>mechanical straining</subject><subject>molecular dynamics simulations</subject><subject>Raman spectroscopy</subject><subject>transition-metal dichalcogenide</subject><subject>two-dimensional materials</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLAzEYRYMoWKtrt4MrQabmPV-WtdQHVBRa0V1IMxk6ZZroJLPovzfS4urexeFyOQhdEzwhmJJ7Y6M3PkxgjTHlcIJGRDFZYpBfp_9dkHN0EeMWY1FBJUfoYZn6waahN13xvjHRFave-NiEfmdSG3zR-iIjpvWuLl6DD53Zuz63z6WjxbTrwv4SnTWmi-7qmGP08ThfzZ7LxdvTy2y6KA1VNJW0IrWoqKEOjOScrYUUdT5LGuMY4azBNXDFG0UYlRQUEOEsWFBYuXUjKRujm8NuiKnV0bbJ2Y0N3jubNOESExAZuj1A3334GVxMetdG67rOeBeGqCnGAMCByozeHdBsTm_D0Pv8XhOs_3Tqo0591Ml-AQyuaD4</recordid><startdate>20180424</startdate><enddate>20180424</enddate><creator>Apte, Amey</creator><creator>Kochat, Vidya</creator><creator>Rajak, Pankaj</creator><creator>Krishnamoorthy, Aravind</creator><creator>Manimunda, Praveena</creator><creator>Hachtel, Jordan A</creator><creator>Idrobo, Juan Carlos</creator><creator>Syed Amanulla, Syed Asif</creator><creator>Vashishta, Priya</creator><creator>Nakano, Aiichiro</creator><creator>Kalia, Rajiv K</creator><creator>Tiwary, Chandra Sekhar</creator><creator>Ajayan, Pulickel M</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-1851-4777</orcidid><orcidid>https://orcid.org/0000-0002-6144-3732</orcidid><orcidid>https://orcid.org/0000-0001-6778-2471</orcidid><orcidid>https://orcid.org/0000-0003-4683-429X</orcidid><orcidid>https://orcid.org/0000-0003-3228-3896</orcidid><orcidid>https://orcid.org/0000-0001-9760-9768</orcidid><orcidid>https://orcid.org/0000000197609768</orcidid><orcidid>https://orcid.org/0000000261443732</orcidid><orcidid>https://orcid.org/000000034683429X</orcidid><orcidid>https://orcid.org/0000000332283896</orcidid><orcidid>https://orcid.org/0000000167782471</orcidid><orcidid>https://orcid.org/0000000218514777</orcidid></search><sort><creationdate>20180424</creationdate><title>Structural Phase Transformation in Strained Monolayer MoWSe2 Alloy</title><author>Apte, Amey ; Kochat, Vidya ; Rajak, Pankaj ; Krishnamoorthy, Aravind ; Manimunda, Praveena ; Hachtel, Jordan A ; Idrobo, Juan Carlos ; Syed Amanulla, Syed Asif ; Vashishta, Priya ; Nakano, Aiichiro ; Kalia, Rajiv K ; Tiwary, Chandra Sekhar ; Ajayan, Pulickel M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a292t-271d572a2e8a6443b565d8b01fae3143f0d8494f91326289815ec8c8909ebf623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>MATERIALS SCIENCE</topic><topic>mechanical straining</topic><topic>molecular dynamics simulations</topic><topic>Raman spectroscopy</topic><topic>transition-metal dichalcogenide</topic><topic>two-dimensional materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Apte, Amey</creatorcontrib><creatorcontrib>Kochat, Vidya</creatorcontrib><creatorcontrib>Rajak, Pankaj</creatorcontrib><creatorcontrib>Krishnamoorthy, Aravind</creatorcontrib><creatorcontrib>Manimunda, Praveena</creatorcontrib><creatorcontrib>Hachtel, Jordan A</creatorcontrib><creatorcontrib>Idrobo, Juan Carlos</creatorcontrib><creatorcontrib>Syed Amanulla, Syed Asif</creatorcontrib><creatorcontrib>Vashishta, Priya</creatorcontrib><creatorcontrib>Nakano, Aiichiro</creatorcontrib><creatorcontrib>Kalia, Rajiv K</creatorcontrib><creatorcontrib>Tiwary, Chandra Sekhar</creatorcontrib><creatorcontrib>Ajayan, Pulickel M</creatorcontrib><creatorcontrib>Univ. of Southern California, Los Angeles, CA (United States)</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Apte, Amey</au><au>Kochat, Vidya</au><au>Rajak, Pankaj</au><au>Krishnamoorthy, Aravind</au><au>Manimunda, Praveena</au><au>Hachtel, Jordan A</au><au>Idrobo, Juan Carlos</au><au>Syed Amanulla, Syed Asif</au><au>Vashishta, Priya</au><au>Nakano, Aiichiro</au><au>Kalia, Rajiv K</au><au>Tiwary, Chandra Sekhar</au><au>Ajayan, Pulickel M</au><aucorp>Univ. of Southern California, Los Angeles, CA (United States)</aucorp><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural Phase Transformation in Strained Monolayer MoWSe2 Alloy</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2018-04-24</date><risdate>2018</risdate><volume>12</volume><issue>4</issue><spage>3468</spage><epage>3476</epage><pages>3468-3476</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Two-dimensional (2D) materials exhibit different mechanical properties from their bulk counterparts owing to their monolayer atomic thickness. Here, we have examined the mechanical behavior of 2D molybdenum tungsten diselenide (MoWSe2) precipitation alloy grown using chemical vapor deposition and composed of numerous nanoscopic MoSe2 and WSe2 regions. Applying a bending strain blue-shifted the MoSe2 and WSe2 A1g Raman modes with the stress concentrated near the precipitate interfaces predominantly affecting the WSe2 modes. In situ local Raman measurements suggested that the crack propagated primarily thorough MoSe2-rich regions in the monolayer alloy. Molecular dynamics (MD) simulations were performed to study crack propagation in an MoSe2 monolayer containing nanoscopic WSe2 regions akin to the experiment. Raman spectra calculated from MD trajectories of crack propagation confirmed the emergence of intermediate peaks in the strained monolayer alloy, mirroring experimental results. The simulations revealed that the stress buildup around the crack tip caused an irreversible structural transformation from the 2H to 1T phase both in the MoSe2 matrix and WSe2 patches. This was corroborated by high-angle annular dark-field images. Crack branching and subsequent healing of a crack branch were also observed in WSe2, indicating the increased toughness and crack propagation resistance of the alloyed 2D MoWSe2 over the unalloyed counterparts.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acsnano.8b00248</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1851-4777</orcidid><orcidid>https://orcid.org/0000-0002-6144-3732</orcidid><orcidid>https://orcid.org/0000-0001-6778-2471</orcidid><orcidid>https://orcid.org/0000-0003-4683-429X</orcidid><orcidid>https://orcid.org/0000-0003-3228-3896</orcidid><orcidid>https://orcid.org/0000-0001-9760-9768</orcidid><orcidid>https://orcid.org/0000000197609768</orcidid><orcidid>https://orcid.org/0000000261443732</orcidid><orcidid>https://orcid.org/000000034683429X</orcidid><orcidid>https://orcid.org/0000000332283896</orcidid><orcidid>https://orcid.org/0000000167782471</orcidid><orcidid>https://orcid.org/0000000218514777</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-0851 |
ispartof | ACS nano, 2018-04, Vol.12 (4), p.3468-3476 |
issn | 1936-0851 1936-086X |
language | eng |
recordid | cdi_osti_scitechconnect_1460185 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | MATERIALS SCIENCE mechanical straining molecular dynamics simulations Raman spectroscopy transition-metal dichalcogenide two-dimensional materials |
title | Structural Phase Transformation in Strained Monolayer MoWSe2 Alloy |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T08%3A32%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20Phase%20Transformation%20in%20Strained%20Monolayer%20MoWSe2%20Alloy&rft.jtitle=ACS%20nano&rft.au=Apte,%20Amey&rft.aucorp=Univ.%20of%20Southern%20California,%20Los%20Angeles,%20CA%20(United%20States)&rft.date=2018-04-24&rft.volume=12&rft.issue=4&rft.spage=3468&rft.epage=3476&rft.pages=3468-3476&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.8b00248&rft_dat=%3Cproquest_osti_%3E2008884826%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a292t-271d572a2e8a6443b565d8b01fae3143f0d8494f91326289815ec8c8909ebf623%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2008884826&rft_id=info:pmid/&rfr_iscdi=true |