Loading…

Structural Phase Transformation in Strained Monolayer MoWSe2 Alloy

Two-dimensional (2D) materials exhibit different mechanical properties from their bulk counterparts owing to their monolayer atomic thickness. Here, we have examined the mechanical behavior of 2D molybdenum tungsten diselenide (MoWSe2) precipitation alloy grown using chemical vapor deposition and co...

Full description

Saved in:
Bibliographic Details
Published in:ACS nano 2018-04, Vol.12 (4), p.3468-3476
Main Authors: Apte, Amey, Kochat, Vidya, Rajak, Pankaj, Krishnamoorthy, Aravind, Manimunda, Praveena, Hachtel, Jordan A, Idrobo, Juan Carlos, Syed Amanulla, Syed Asif, Vashishta, Priya, Nakano, Aiichiro, Kalia, Rajiv K, Tiwary, Chandra Sekhar, Ajayan, Pulickel M
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 3476
container_issue 4
container_start_page 3468
container_title ACS nano
container_volume 12
creator Apte, Amey
Kochat, Vidya
Rajak, Pankaj
Krishnamoorthy, Aravind
Manimunda, Praveena
Hachtel, Jordan A
Idrobo, Juan Carlos
Syed Amanulla, Syed Asif
Vashishta, Priya
Nakano, Aiichiro
Kalia, Rajiv K
Tiwary, Chandra Sekhar
Ajayan, Pulickel M
description Two-dimensional (2D) materials exhibit different mechanical properties from their bulk counterparts owing to their monolayer atomic thickness. Here, we have examined the mechanical behavior of 2D molybdenum tungsten diselenide (MoWSe2) precipitation alloy grown using chemical vapor deposition and composed of numerous nanoscopic MoSe2 and WSe2 regions. Applying a bending strain blue-shifted the MoSe2 and WSe2 A1g Raman modes with the stress concentrated near the precipitate interfaces predominantly affecting the WSe2 modes. In situ local Raman measurements suggested that the crack propagated primarily thorough MoSe2-rich regions in the monolayer alloy. Molecular dynamics (MD) simulations were performed to study crack propagation in an MoSe2 monolayer containing nanoscopic WSe2 regions akin to the experiment. Raman spectra calculated from MD trajectories of crack propagation confirmed the emergence of intermediate peaks in the strained monolayer alloy, mirroring experimental results. The simulations revealed that the stress buildup around the crack tip caused an irreversible structural transformation from the 2H to 1T phase both in the MoSe2 matrix and WSe2 patches. This was corroborated by high-angle annular dark-field images. Crack branching and subsequent healing of a crack branch were also observed in WSe2, indicating the increased toughness and crack propagation resistance of the alloyed 2D MoWSe2 over the unalloyed counterparts.
doi_str_mv 10.1021/acsnano.8b00248
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1460185</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2008884826</sourcerecordid><originalsourceid>FETCH-LOGICAL-a292t-271d572a2e8a6443b565d8b01fae3143f0d8494f91326289815ec8c8909ebf623</originalsourceid><addsrcrecordid>eNo9kEtLAzEYRYMoWKtrt4MrQabmPV-WtdQHVBRa0V1IMxk6ZZroJLPovzfS4urexeFyOQhdEzwhmJJ7Y6M3PkxgjTHlcIJGRDFZYpBfp_9dkHN0EeMWY1FBJUfoYZn6waahN13xvjHRFave-NiEfmdSG3zR-iIjpvWuLl6DD53Zuz63z6WjxbTrwv4SnTWmi-7qmGP08ThfzZ7LxdvTy2y6KA1VNJW0IrWoqKEOjOScrYUUdT5LGuMY4azBNXDFG0UYlRQUEOEsWFBYuXUjKRujm8NuiKnV0bbJ2Y0N3jubNOESExAZuj1A3334GVxMetdG67rOeBeGqCnGAMCByozeHdBsTm_D0Pv8XhOs_3Tqo0591Ml-AQyuaD4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2008884826</pqid></control><display><type>article</type><title>Structural Phase Transformation in Strained Monolayer MoWSe2 Alloy</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Apte, Amey ; Kochat, Vidya ; Rajak, Pankaj ; Krishnamoorthy, Aravind ; Manimunda, Praveena ; Hachtel, Jordan A ; Idrobo, Juan Carlos ; Syed Amanulla, Syed Asif ; Vashishta, Priya ; Nakano, Aiichiro ; Kalia, Rajiv K ; Tiwary, Chandra Sekhar ; Ajayan, Pulickel M</creator><creatorcontrib>Apte, Amey ; Kochat, Vidya ; Rajak, Pankaj ; Krishnamoorthy, Aravind ; Manimunda, Praveena ; Hachtel, Jordan A ; Idrobo, Juan Carlos ; Syed Amanulla, Syed Asif ; Vashishta, Priya ; Nakano, Aiichiro ; Kalia, Rajiv K ; Tiwary, Chandra Sekhar ; Ajayan, Pulickel M ; Univ. of Southern California, Los Angeles, CA (United States) ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>Two-dimensional (2D) materials exhibit different mechanical properties from their bulk counterparts owing to their monolayer atomic thickness. Here, we have examined the mechanical behavior of 2D molybdenum tungsten diselenide (MoWSe2) precipitation alloy grown using chemical vapor deposition and composed of numerous nanoscopic MoSe2 and WSe2 regions. Applying a bending strain blue-shifted the MoSe2 and WSe2 A1g Raman modes with the stress concentrated near the precipitate interfaces predominantly affecting the WSe2 modes. In situ local Raman measurements suggested that the crack propagated primarily thorough MoSe2-rich regions in the monolayer alloy. Molecular dynamics (MD) simulations were performed to study crack propagation in an MoSe2 monolayer containing nanoscopic WSe2 regions akin to the experiment. Raman spectra calculated from MD trajectories of crack propagation confirmed the emergence of intermediate peaks in the strained monolayer alloy, mirroring experimental results. The simulations revealed that the stress buildup around the crack tip caused an irreversible structural transformation from the 2H to 1T phase both in the MoSe2 matrix and WSe2 patches. This was corroborated by high-angle annular dark-field images. Crack branching and subsequent healing of a crack branch were also observed in WSe2, indicating the increased toughness and crack propagation resistance of the alloyed 2D MoWSe2 over the unalloyed counterparts.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.8b00248</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>MATERIALS SCIENCE ; mechanical straining ; molecular dynamics simulations ; Raman spectroscopy ; transition-metal dichalcogenide ; two-dimensional materials</subject><ispartof>ACS nano, 2018-04, Vol.12 (4), p.3468-3476</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-1851-4777 ; 0000-0002-6144-3732 ; 0000-0001-6778-2471 ; 0000-0003-4683-429X ; 0000-0003-3228-3896 ; 0000-0001-9760-9768 ; 0000000197609768 ; 0000000261443732 ; 000000034683429X ; 0000000332283896 ; 0000000167782471 ; 0000000218514777</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1460185$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Apte, Amey</creatorcontrib><creatorcontrib>Kochat, Vidya</creatorcontrib><creatorcontrib>Rajak, Pankaj</creatorcontrib><creatorcontrib>Krishnamoorthy, Aravind</creatorcontrib><creatorcontrib>Manimunda, Praveena</creatorcontrib><creatorcontrib>Hachtel, Jordan A</creatorcontrib><creatorcontrib>Idrobo, Juan Carlos</creatorcontrib><creatorcontrib>Syed Amanulla, Syed Asif</creatorcontrib><creatorcontrib>Vashishta, Priya</creatorcontrib><creatorcontrib>Nakano, Aiichiro</creatorcontrib><creatorcontrib>Kalia, Rajiv K</creatorcontrib><creatorcontrib>Tiwary, Chandra Sekhar</creatorcontrib><creatorcontrib>Ajayan, Pulickel M</creatorcontrib><creatorcontrib>Univ. of Southern California, Los Angeles, CA (United States)</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Structural Phase Transformation in Strained Monolayer MoWSe2 Alloy</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Two-dimensional (2D) materials exhibit different mechanical properties from their bulk counterparts owing to their monolayer atomic thickness. Here, we have examined the mechanical behavior of 2D molybdenum tungsten diselenide (MoWSe2) precipitation alloy grown using chemical vapor deposition and composed of numerous nanoscopic MoSe2 and WSe2 regions. Applying a bending strain blue-shifted the MoSe2 and WSe2 A1g Raman modes with the stress concentrated near the precipitate interfaces predominantly affecting the WSe2 modes. In situ local Raman measurements suggested that the crack propagated primarily thorough MoSe2-rich regions in the monolayer alloy. Molecular dynamics (MD) simulations were performed to study crack propagation in an MoSe2 monolayer containing nanoscopic WSe2 regions akin to the experiment. Raman spectra calculated from MD trajectories of crack propagation confirmed the emergence of intermediate peaks in the strained monolayer alloy, mirroring experimental results. The simulations revealed that the stress buildup around the crack tip caused an irreversible structural transformation from the 2H to 1T phase both in the MoSe2 matrix and WSe2 patches. This was corroborated by high-angle annular dark-field images. Crack branching and subsequent healing of a crack branch were also observed in WSe2, indicating the increased toughness and crack propagation resistance of the alloyed 2D MoWSe2 over the unalloyed counterparts.</description><subject>MATERIALS SCIENCE</subject><subject>mechanical straining</subject><subject>molecular dynamics simulations</subject><subject>Raman spectroscopy</subject><subject>transition-metal dichalcogenide</subject><subject>two-dimensional materials</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLAzEYRYMoWKtrt4MrQabmPV-WtdQHVBRa0V1IMxk6ZZroJLPovzfS4urexeFyOQhdEzwhmJJ7Y6M3PkxgjTHlcIJGRDFZYpBfp_9dkHN0EeMWY1FBJUfoYZn6waahN13xvjHRFave-NiEfmdSG3zR-iIjpvWuLl6DD53Zuz63z6WjxbTrwv4SnTWmi-7qmGP08ThfzZ7LxdvTy2y6KA1VNJW0IrWoqKEOjOScrYUUdT5LGuMY4azBNXDFG0UYlRQUEOEsWFBYuXUjKRujm8NuiKnV0bbJ2Y0N3jubNOESExAZuj1A3334GVxMetdG67rOeBeGqCnGAMCByozeHdBsTm_D0Pv8XhOs_3Tqo0591Ml-AQyuaD4</recordid><startdate>20180424</startdate><enddate>20180424</enddate><creator>Apte, Amey</creator><creator>Kochat, Vidya</creator><creator>Rajak, Pankaj</creator><creator>Krishnamoorthy, Aravind</creator><creator>Manimunda, Praveena</creator><creator>Hachtel, Jordan A</creator><creator>Idrobo, Juan Carlos</creator><creator>Syed Amanulla, Syed Asif</creator><creator>Vashishta, Priya</creator><creator>Nakano, Aiichiro</creator><creator>Kalia, Rajiv K</creator><creator>Tiwary, Chandra Sekhar</creator><creator>Ajayan, Pulickel M</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-1851-4777</orcidid><orcidid>https://orcid.org/0000-0002-6144-3732</orcidid><orcidid>https://orcid.org/0000-0001-6778-2471</orcidid><orcidid>https://orcid.org/0000-0003-4683-429X</orcidid><orcidid>https://orcid.org/0000-0003-3228-3896</orcidid><orcidid>https://orcid.org/0000-0001-9760-9768</orcidid><orcidid>https://orcid.org/0000000197609768</orcidid><orcidid>https://orcid.org/0000000261443732</orcidid><orcidid>https://orcid.org/000000034683429X</orcidid><orcidid>https://orcid.org/0000000332283896</orcidid><orcidid>https://orcid.org/0000000167782471</orcidid><orcidid>https://orcid.org/0000000218514777</orcidid></search><sort><creationdate>20180424</creationdate><title>Structural Phase Transformation in Strained Monolayer MoWSe2 Alloy</title><author>Apte, Amey ; Kochat, Vidya ; Rajak, Pankaj ; Krishnamoorthy, Aravind ; Manimunda, Praveena ; Hachtel, Jordan A ; Idrobo, Juan Carlos ; Syed Amanulla, Syed Asif ; Vashishta, Priya ; Nakano, Aiichiro ; Kalia, Rajiv K ; Tiwary, Chandra Sekhar ; Ajayan, Pulickel M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a292t-271d572a2e8a6443b565d8b01fae3143f0d8494f91326289815ec8c8909ebf623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>MATERIALS SCIENCE</topic><topic>mechanical straining</topic><topic>molecular dynamics simulations</topic><topic>Raman spectroscopy</topic><topic>transition-metal dichalcogenide</topic><topic>two-dimensional materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Apte, Amey</creatorcontrib><creatorcontrib>Kochat, Vidya</creatorcontrib><creatorcontrib>Rajak, Pankaj</creatorcontrib><creatorcontrib>Krishnamoorthy, Aravind</creatorcontrib><creatorcontrib>Manimunda, Praveena</creatorcontrib><creatorcontrib>Hachtel, Jordan A</creatorcontrib><creatorcontrib>Idrobo, Juan Carlos</creatorcontrib><creatorcontrib>Syed Amanulla, Syed Asif</creatorcontrib><creatorcontrib>Vashishta, Priya</creatorcontrib><creatorcontrib>Nakano, Aiichiro</creatorcontrib><creatorcontrib>Kalia, Rajiv K</creatorcontrib><creatorcontrib>Tiwary, Chandra Sekhar</creatorcontrib><creatorcontrib>Ajayan, Pulickel M</creatorcontrib><creatorcontrib>Univ. of Southern California, Los Angeles, CA (United States)</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Apte, Amey</au><au>Kochat, Vidya</au><au>Rajak, Pankaj</au><au>Krishnamoorthy, Aravind</au><au>Manimunda, Praveena</au><au>Hachtel, Jordan A</au><au>Idrobo, Juan Carlos</au><au>Syed Amanulla, Syed Asif</au><au>Vashishta, Priya</au><au>Nakano, Aiichiro</au><au>Kalia, Rajiv K</au><au>Tiwary, Chandra Sekhar</au><au>Ajayan, Pulickel M</au><aucorp>Univ. of Southern California, Los Angeles, CA (United States)</aucorp><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural Phase Transformation in Strained Monolayer MoWSe2 Alloy</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2018-04-24</date><risdate>2018</risdate><volume>12</volume><issue>4</issue><spage>3468</spage><epage>3476</epage><pages>3468-3476</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Two-dimensional (2D) materials exhibit different mechanical properties from their bulk counterparts owing to their monolayer atomic thickness. Here, we have examined the mechanical behavior of 2D molybdenum tungsten diselenide (MoWSe2) precipitation alloy grown using chemical vapor deposition and composed of numerous nanoscopic MoSe2 and WSe2 regions. Applying a bending strain blue-shifted the MoSe2 and WSe2 A1g Raman modes with the stress concentrated near the precipitate interfaces predominantly affecting the WSe2 modes. In situ local Raman measurements suggested that the crack propagated primarily thorough MoSe2-rich regions in the monolayer alloy. Molecular dynamics (MD) simulations were performed to study crack propagation in an MoSe2 monolayer containing nanoscopic WSe2 regions akin to the experiment. Raman spectra calculated from MD trajectories of crack propagation confirmed the emergence of intermediate peaks in the strained monolayer alloy, mirroring experimental results. The simulations revealed that the stress buildup around the crack tip caused an irreversible structural transformation from the 2H to 1T phase both in the MoSe2 matrix and WSe2 patches. This was corroborated by high-angle annular dark-field images. Crack branching and subsequent healing of a crack branch were also observed in WSe2, indicating the increased toughness and crack propagation resistance of the alloyed 2D MoWSe2 over the unalloyed counterparts.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acsnano.8b00248</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1851-4777</orcidid><orcidid>https://orcid.org/0000-0002-6144-3732</orcidid><orcidid>https://orcid.org/0000-0001-6778-2471</orcidid><orcidid>https://orcid.org/0000-0003-4683-429X</orcidid><orcidid>https://orcid.org/0000-0003-3228-3896</orcidid><orcidid>https://orcid.org/0000-0001-9760-9768</orcidid><orcidid>https://orcid.org/0000000197609768</orcidid><orcidid>https://orcid.org/0000000261443732</orcidid><orcidid>https://orcid.org/000000034683429X</orcidid><orcidid>https://orcid.org/0000000332283896</orcidid><orcidid>https://orcid.org/0000000167782471</orcidid><orcidid>https://orcid.org/0000000218514777</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2018-04, Vol.12 (4), p.3468-3476
issn 1936-0851
1936-086X
language eng
recordid cdi_osti_scitechconnect_1460185
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects MATERIALS SCIENCE
mechanical straining
molecular dynamics simulations
Raman spectroscopy
transition-metal dichalcogenide
two-dimensional materials
title Structural Phase Transformation in Strained Monolayer MoWSe2 Alloy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T08%3A32%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20Phase%20Transformation%20in%20Strained%20Monolayer%20MoWSe2%20Alloy&rft.jtitle=ACS%20nano&rft.au=Apte,%20Amey&rft.aucorp=Univ.%20of%20Southern%20California,%20Los%20Angeles,%20CA%20(United%20States)&rft.date=2018-04-24&rft.volume=12&rft.issue=4&rft.spage=3468&rft.epage=3476&rft.pages=3468-3476&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.8b00248&rft_dat=%3Cproquest_osti_%3E2008884826%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a292t-271d572a2e8a6443b565d8b01fae3143f0d8494f91326289815ec8c8909ebf623%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2008884826&rft_id=info:pmid/&rfr_iscdi=true