Loading…

Three-flavored nonresonant leptogenesis at intermediate scales

Leptogenesis can successfully explain the matter-antimatter asymmetry via out-of-equilibrium decays of heavy Majorana neutrinos in the early Universe. In this article, we focus on nonresonant thermal leptogenesis and the possibility of lowering its scale. In order to do so, we calculate the lepton a...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. D 2018-07, Vol.98 (1), p.015036, Article 015036
Main Authors: Moffat, K., Pascoli, S., Petcov, S. T., Schulz, H., Turner, J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Leptogenesis can successfully explain the matter-antimatter asymmetry via out-of-equilibrium decays of heavy Majorana neutrinos in the early Universe. In this article, we focus on nonresonant thermal leptogenesis and the possibility of lowering its scale. In order to do so, we calculate the lepton asymmetry produced from the decays of one and two heavy Majorana neutrinos using three-flavored density matrix equations in an exhaustive exploration of the model parameter space. We find regions of the parameter space where thermal leptogenesis is viable at intermediate scales, T∼106  GeV. However, the viability of thermal leptogenesis at such scales requires a certain degree of cancellation between the tree- and one-loop level contribution to the light neutrino mass matrix, and we quantify such fine-tuning.
ISSN:2470-0010
2470-0029
DOI:10.1103/PhysRevD.98.015036