Loading…

In Situ Formation of FeRh Nanoalloys for Oxygenate Synthesis

Early and late transition metals are often combined as a strategy to tune the selectivity of catalysts for the conversion of syngas (CO/H2) to C2+ oxygenates, such as ethanol. Here we show how the use of a highly reducible Fe2O3 support for Rh leads to the in situ formation of supported FeRh nanoall...

Full description

Saved in:
Bibliographic Details
Published in:ACS catalysis 2018-06, Vol.8
Main Authors: Carrillo, Pamela, Shi, Rui, Teeluck, Krishani, Senanayake, Sanjaya D., White, Michael G.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title ACS catalysis
container_volume 8
creator Carrillo, Pamela
Shi, Rui
Teeluck, Krishani
Senanayake, Sanjaya D.
White, Michael G.
description Early and late transition metals are often combined as a strategy to tune the selectivity of catalysts for the conversion of syngas (CO/H2) to C2+ oxygenates, such as ethanol. Here we show how the use of a highly reducible Fe2O3 support for Rh leads to the in situ formation of supported FeRh nanoalloy catalysts that exhibit high selectivity for ethanol synthesis. In situ characterizations by X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) reveal the coexistence of iron oxide, iron carbide, metallic iron, and FeRh alloy phases depending on reaction conditions and Rh loading. Structural analysis coupled with catalytic testing indicates that oxygenate formation is correlated to the presence of FeRh alloys, while the iron oxide and carbide phases lead mainly to hydrocarbons. Finally, the formation of nanoalloys by in situ reduction of a metal oxide support under working conditions represents a simple approach for the preparation bimetallic catalysts with enhanced catalytic properties.
format article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1462400</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1462400</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_14624003</originalsourceid><addsrcrecordid>eNqNirEKwjAUAIMoWLT_8HAvpG1SHdzEoouCdS8hvNhIzYO-CPbvdXBw9Ja74SYiKXKtM61KPf3puUiZ7_KD0tVmLROxPQZofHxCTcPDRE8ByEGNlw5OJpDpexoZHA1wfo03DCYiNGOIHbLnpZg50zOmXy_Eqt5fd4eMOPqWrY9oO0shoI1trqpCSVn-Nb0B9XQ4_g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>In Situ Formation of FeRh Nanoalloys for Oxygenate Synthesis</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Carrillo, Pamela ; Shi, Rui ; Teeluck, Krishani ; Senanayake, Sanjaya D. ; White, Michael G.</creator><creatorcontrib>Carrillo, Pamela ; Shi, Rui ; Teeluck, Krishani ; Senanayake, Sanjaya D. ; White, Michael G. ; Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><description>Early and late transition metals are often combined as a strategy to tune the selectivity of catalysts for the conversion of syngas (CO/H2) to C2+ oxygenates, such as ethanol. Here we show how the use of a highly reducible Fe2O3 support for Rh leads to the in situ formation of supported FeRh nanoalloy catalysts that exhibit high selectivity for ethanol synthesis. In situ characterizations by X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) reveal the coexistence of iron oxide, iron carbide, metallic iron, and FeRh alloy phases depending on reaction conditions and Rh loading. Structural analysis coupled with catalytic testing indicates that oxygenate formation is correlated to the presence of FeRh alloys, while the iron oxide and carbide phases lead mainly to hydrocarbons. Finally, the formation of nanoalloys by in situ reduction of a metal oxide support under working conditions represents a simple approach for the preparation bimetallic catalysts with enhanced catalytic properties.</description><identifier>ISSN: 2155-5435</identifier><identifier>EISSN: 2155-5435</identifier><language>eng</language><publisher>United States: American Chemical Society (ACS)</publisher><subject>CO hydrogenation ; heterogeneous catalysis ; in situ characterization ; INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY ; iron−rhodium alloy ; oxygenate synthesis ; supported catalysts</subject><ispartof>ACS catalysis, 2018-06, Vol.8</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000339914232 ; 0000000317082930</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1462400$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Carrillo, Pamela</creatorcontrib><creatorcontrib>Shi, Rui</creatorcontrib><creatorcontrib>Teeluck, Krishani</creatorcontrib><creatorcontrib>Senanayake, Sanjaya D.</creatorcontrib><creatorcontrib>White, Michael G.</creatorcontrib><creatorcontrib>Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><title>In Situ Formation of FeRh Nanoalloys for Oxygenate Synthesis</title><title>ACS catalysis</title><description>Early and late transition metals are often combined as a strategy to tune the selectivity of catalysts for the conversion of syngas (CO/H2) to C2+ oxygenates, such as ethanol. Here we show how the use of a highly reducible Fe2O3 support for Rh leads to the in situ formation of supported FeRh nanoalloy catalysts that exhibit high selectivity for ethanol synthesis. In situ characterizations by X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) reveal the coexistence of iron oxide, iron carbide, metallic iron, and FeRh alloy phases depending on reaction conditions and Rh loading. Structural analysis coupled with catalytic testing indicates that oxygenate formation is correlated to the presence of FeRh alloys, while the iron oxide and carbide phases lead mainly to hydrocarbons. Finally, the formation of nanoalloys by in situ reduction of a metal oxide support under working conditions represents a simple approach for the preparation bimetallic catalysts with enhanced catalytic properties.</description><subject>CO hydrogenation</subject><subject>heterogeneous catalysis</subject><subject>in situ characterization</subject><subject>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</subject><subject>iron−rhodium alloy</subject><subject>oxygenate synthesis</subject><subject>supported catalysts</subject><issn>2155-5435</issn><issn>2155-5435</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqNirEKwjAUAIMoWLT_8HAvpG1SHdzEoouCdS8hvNhIzYO-CPbvdXBw9Ja74SYiKXKtM61KPf3puUiZ7_KD0tVmLROxPQZofHxCTcPDRE8ByEGNlw5OJpDpexoZHA1wfo03DCYiNGOIHbLnpZg50zOmXy_Eqt5fd4eMOPqWrY9oO0shoI1trqpCSVn-Nb0B9XQ4_g</recordid><startdate>20180627</startdate><enddate>20180627</enddate><creator>Carrillo, Pamela</creator><creator>Shi, Rui</creator><creator>Teeluck, Krishani</creator><creator>Senanayake, Sanjaya D.</creator><creator>White, Michael G.</creator><general>American Chemical Society (ACS)</general><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000339914232</orcidid><orcidid>https://orcid.org/0000000317082930</orcidid></search><sort><creationdate>20180627</creationdate><title>In Situ Formation of FeRh Nanoalloys for Oxygenate Synthesis</title><author>Carrillo, Pamela ; Shi, Rui ; Teeluck, Krishani ; Senanayake, Sanjaya D. ; White, Michael G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_14624003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>CO hydrogenation</topic><topic>heterogeneous catalysis</topic><topic>in situ characterization</topic><topic>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</topic><topic>iron−rhodium alloy</topic><topic>oxygenate synthesis</topic><topic>supported catalysts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carrillo, Pamela</creatorcontrib><creatorcontrib>Shi, Rui</creatorcontrib><creatorcontrib>Teeluck, Krishani</creatorcontrib><creatorcontrib>Senanayake, Sanjaya D.</creatorcontrib><creatorcontrib>White, Michael G.</creatorcontrib><creatorcontrib>Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>ACS catalysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carrillo, Pamela</au><au>Shi, Rui</au><au>Teeluck, Krishani</au><au>Senanayake, Sanjaya D.</au><au>White, Michael G.</au><aucorp>Brookhaven National Lab. (BNL), Upton, NY (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In Situ Formation of FeRh Nanoalloys for Oxygenate Synthesis</atitle><jtitle>ACS catalysis</jtitle><date>2018-06-27</date><risdate>2018</risdate><volume>8</volume><issn>2155-5435</issn><eissn>2155-5435</eissn><abstract>Early and late transition metals are often combined as a strategy to tune the selectivity of catalysts for the conversion of syngas (CO/H2) to C2+ oxygenates, such as ethanol. Here we show how the use of a highly reducible Fe2O3 support for Rh leads to the in situ formation of supported FeRh nanoalloy catalysts that exhibit high selectivity for ethanol synthesis. In situ characterizations by X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) reveal the coexistence of iron oxide, iron carbide, metallic iron, and FeRh alloy phases depending on reaction conditions and Rh loading. Structural analysis coupled with catalytic testing indicates that oxygenate formation is correlated to the presence of FeRh alloys, while the iron oxide and carbide phases lead mainly to hydrocarbons. Finally, the formation of nanoalloys by in situ reduction of a metal oxide support under working conditions represents a simple approach for the preparation bimetallic catalysts with enhanced catalytic properties.</abstract><cop>United States</cop><pub>American Chemical Society (ACS)</pub><orcidid>https://orcid.org/0000000339914232</orcidid><orcidid>https://orcid.org/0000000317082930</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2155-5435
ispartof ACS catalysis, 2018-06, Vol.8
issn 2155-5435
2155-5435
language eng
recordid cdi_osti_scitechconnect_1462400
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects CO hydrogenation
heterogeneous catalysis
in situ characterization
INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY
iron−rhodium alloy
oxygenate synthesis
supported catalysts
title In Situ Formation of FeRh Nanoalloys for Oxygenate Synthesis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T22%3A53%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20Situ%20Formation%20of%20FeRh%20Nanoalloys%20for%20Oxygenate%20Synthesis&rft.jtitle=ACS%20catalysis&rft.au=Carrillo,%20Pamela&rft.aucorp=Brookhaven%20National%20Lab.%20(BNL),%20Upton,%20NY%20(United%20States)&rft.date=2018-06-27&rft.volume=8&rft.issn=2155-5435&rft.eissn=2155-5435&rft_id=info:doi/&rft_dat=%3Costi%3E1462400%3C/osti%3E%3Cgrp_id%3Ecdi_FETCH-osti_scitechconnect_14624003%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true