Loading…
Simultaneous measurements of turbulent Reynolds stresses and particle flux in both parallel and perpendicular directions in a linear magnetized plasma device
We report temporally resolved simultaneous measurements of the turbulent Reynolds stresses in both the parallel and perpendicular directions and the corresponding particle fluxes in the fusion relevant cylindrical magnetized plasma device Controlled Shear Decorrelation eXperiment (CSDX). CSDX simula...
Saved in:
Published in: | Review of scientific instruments 2018-10, Vol.89 (10), p.10J117-10J117 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We report temporally resolved simultaneous measurements of the turbulent Reynolds stresses in both the parallel and perpendicular directions and the corresponding particle fluxes in the fusion relevant cylindrical magnetized plasma device Controlled Shear Decorrelation eXperiment (CSDX). CSDX simulates the plasma conditions of multiple plasma instabilities that can arise in the scrape-off layer of fusion devices. In this study, we designed and used a 6-tip Langmuir probe in a novel yet simple design to simultaneously measure all the three dimensional components (radial, azimuthal, and axial) of fluctuations in velocity from the floating potentials and plasma densities with high temporal resolution. From these, we calculated the parallel and perpendicular Reynolds stress and the particle fluxes in addition to the density and potential spectra and the cross phase between different quantities. We can obtain radial profiles of all the aforementioned plasma quantities, which are extremely useful for studying plasma turbulence due to multiple instabilities. We have also cross-checked the time averaged velocity profiles from the probe with laser induced fluorescence measurements of the mean plasma velocity for some common plasma source parameters. |
---|---|
ISSN: | 0034-6748 1089-7623 |
DOI: | 10.1063/1.5039433 |