Loading…
Bonded thin film lithium niobate modulator on a silicon photonics platform exceeding 100 GHz 3-dB electrical modulation bandwidth
We demonstrate an ultra-high-bandwidth Mach-Zehnder electro-optic modulator (EOM), based on foundry-fabricated silicon (Si) photonics, made using conventional lithography and wafer-scale fabrication, oxide-bonded at 200C to a lithium niobate (LN) thin film. Our design integrates silicon photonics li...
Saved in:
Published in: | Optics express 2018-09, Vol.26 (18), p.23728-23739 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We demonstrate an ultra-high-bandwidth Mach-Zehnder electro-optic modulator (EOM), based on foundry-fabricated silicon (Si) photonics, made using conventional lithography and wafer-scale fabrication, oxide-bonded at 200C to a lithium niobate (LN) thin film. Our design integrates silicon photonics light input/output and optical components, such as directional couplers and low-radius bends. No etching or patterning of the thin film LN is required. This hybrid Si-LN MZM achieves beyond 106 GHz 3-dB electrical modulation bandwidth, the highest of any silicon photonic or lithium niobate (phase) modulator. |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/oe.26.023728 |