Loading…

Plasma electron hole kinematics. II. Hole tracking Particle-In-Cell simulation

The kinematics of a 1-D electron hole is studied using a novel Particle-In-Cell simulation code. A hole tracking technique enables us to follow the trajectory of a fast-moving solitary hole and study quantitatively hole acceleration and coupling to ions. We observe a transient at the initial stage o...

Full description

Saved in:
Bibliographic Details
Published in:Physics of plasmas 2016-08, Vol.23 (8)
Main Authors: Zhou, C., Hutchinson, I. H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c459t-8973bcb21cb2361223972d3e1b2f98f06242fc377a3c56c2b9c84e27d1c21dc73
cites cdi_FETCH-LOGICAL-c459t-8973bcb21cb2361223972d3e1b2f98f06242fc377a3c56c2b9c84e27d1c21dc73
container_end_page
container_issue 8
container_start_page
container_title Physics of plasmas
container_volume 23
creator Zhou, C.
Hutchinson, I. H.
description The kinematics of a 1-D electron hole is studied using a novel Particle-In-Cell simulation code. A hole tracking technique enables us to follow the trajectory of a fast-moving solitary hole and study quantitatively hole acceleration and coupling to ions. We observe a transient at the initial stage of hole formation when the hole accelerates to several times the cold-ion sound speed. Artificially imposing slow ion speed changes on a fully formed hole causes its velocity to change even when the ion stream speed in the hole frame greatly exceeds the ion thermal speed, so there are no reflected ions. The behavior that we observe in numerical simulations agrees very well with our analytic theory of hole momentum conservation and the effects of “jetting.”
doi_str_mv 10.1063/1.4959871
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1467859</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2121705832</sourcerecordid><originalsourceid>FETCH-LOGICAL-c459t-8973bcb21cb2361223972d3e1b2f98f06242fc377a3c56c2b9c84e27d1c21dc73</originalsourceid><addsrcrecordid>eNp90E9LwzAUAPAgCs7pwW9Q9KTQmn9NmqMMdQXRHRS8hTRNXWfWzKQT_PamduhB8PDII-_HS94D4BTBDEFGrlBGRS4KjvbABMFCpJxxuj_kHKaM0ZdDcBTCCkJIWV5MwMPCqrBWibFG9951ydJZk7y1nVmrvtUhS8oyS-bDZe-VjoXXZKF8LFmTll06M9YmoV1vbeSuOwYHjbLBnOzOKXi-vXmazdP7x7tydn2fapqLPi0EJ5WuMIpBGMKYCI5rYlCFG1E0kGGKG004V0TnTONK6IIazGukMao1J1NwNvZ1oW9l0G1v9FK7rotTSEQZL3IR0fmINt69b03o5cptfRf_JTHCiMO8IDiqi1Fp70LwppEb366V_5QIymGnEsndTqO9HO3w4vfAP_jD-V8oN3XzH_7b-Qul14MB</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2121705832</pqid></control><display><type>article</type><title>Plasma electron hole kinematics. II. Hole tracking Particle-In-Cell simulation</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP Journals (American Institute of Physics)</source><creator>Zhou, C. ; Hutchinson, I. H.</creator><creatorcontrib>Zhou, C. ; Hutchinson, I. H. ; Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</creatorcontrib><description>The kinematics of a 1-D electron hole is studied using a novel Particle-In-Cell simulation code. A hole tracking technique enables us to follow the trajectory of a fast-moving solitary hole and study quantitatively hole acceleration and coupling to ions. We observe a transient at the initial stage of hole formation when the hole accelerates to several times the cold-ion sound speed. Artificially imposing slow ion speed changes on a fully formed hole causes its velocity to change even when the ion stream speed in the hole frame greatly exceeds the ion thermal speed, so there are no reflected ions. The behavior that we observe in numerical simulations agrees very well with our analytic theory of hole momentum conservation and the effects of “jetting.”</description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><identifier>DOI: 10.1063/1.4959871</identifier><identifier>CODEN: PHPAEN</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; boundary value problems ; Computer simulation ; conservation of momentum ; electric fields ; electron hole plasma ; Holes (electron deficiencies) ; Kinematics ; low pass filters ; MATHEMATICS AND COMPUTING ; Maxwell equations ; Particle in cell technique ; particle-in-cell method ; Plasma physics ; spatial dimensions ; speed of sound ; Tracking</subject><ispartof>Physics of plasmas, 2016-08, Vol.23 (8)</ispartof><rights>Author(s)</rights><rights>2016 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c459t-8973bcb21cb2361223972d3e1b2f98f06242fc377a3c56c2b9c84e27d1c21dc73</citedby><cites>FETCH-LOGICAL-c459t-8973bcb21cb2361223972d3e1b2f98f06242fc377a3c56c2b9c84e27d1c21dc73</cites><orcidid>0000-0003-4276-6576 ; 0000000342766576</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/pop/article-lookup/doi/10.1063/1.4959871$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,776,778,780,791,881,27901,27902,76125</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1467859$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, C.</creatorcontrib><creatorcontrib>Hutchinson, I. H.</creatorcontrib><creatorcontrib>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</creatorcontrib><title>Plasma electron hole kinematics. II. Hole tracking Particle-In-Cell simulation</title><title>Physics of plasmas</title><description>The kinematics of a 1-D electron hole is studied using a novel Particle-In-Cell simulation code. A hole tracking technique enables us to follow the trajectory of a fast-moving solitary hole and study quantitatively hole acceleration and coupling to ions. We observe a transient at the initial stage of hole formation when the hole accelerates to several times the cold-ion sound speed. Artificially imposing slow ion speed changes on a fully formed hole causes its velocity to change even when the ion stream speed in the hole frame greatly exceeds the ion thermal speed, so there are no reflected ions. The behavior that we observe in numerical simulations agrees very well with our analytic theory of hole momentum conservation and the effects of “jetting.”</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>boundary value problems</subject><subject>Computer simulation</subject><subject>conservation of momentum</subject><subject>electric fields</subject><subject>electron hole plasma</subject><subject>Holes (electron deficiencies)</subject><subject>Kinematics</subject><subject>low pass filters</subject><subject>MATHEMATICS AND COMPUTING</subject><subject>Maxwell equations</subject><subject>Particle in cell technique</subject><subject>particle-in-cell method</subject><subject>Plasma physics</subject><subject>spatial dimensions</subject><subject>speed of sound</subject><subject>Tracking</subject><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp90E9LwzAUAPAgCs7pwW9Q9KTQmn9NmqMMdQXRHRS8hTRNXWfWzKQT_PamduhB8PDII-_HS94D4BTBDEFGrlBGRS4KjvbABMFCpJxxuj_kHKaM0ZdDcBTCCkJIWV5MwMPCqrBWibFG9951ydJZk7y1nVmrvtUhS8oyS-bDZe-VjoXXZKF8LFmTll06M9YmoV1vbeSuOwYHjbLBnOzOKXi-vXmazdP7x7tydn2fapqLPi0EJ5WuMIpBGMKYCI5rYlCFG1E0kGGKG004V0TnTONK6IIazGukMao1J1NwNvZ1oW9l0G1v9FK7rotTSEQZL3IR0fmINt69b03o5cptfRf_JTHCiMO8IDiqi1Fp70LwppEb366V_5QIymGnEsndTqO9HO3w4vfAP_jD-V8oN3XzH_7b-Qul14MB</recordid><startdate>20160801</startdate><enddate>20160801</enddate><creator>Zhou, C.</creator><creator>Hutchinson, I. H.</creator><general>American Institute of Physics</general><general>American Institute of Physics (AIP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-4276-6576</orcidid><orcidid>https://orcid.org/0000000342766576</orcidid></search><sort><creationdate>20160801</creationdate><title>Plasma electron hole kinematics. II. Hole tracking Particle-In-Cell simulation</title><author>Zhou, C. ; Hutchinson, I. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c459t-8973bcb21cb2361223972d3e1b2f98f06242fc377a3c56c2b9c84e27d1c21dc73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>boundary value problems</topic><topic>Computer simulation</topic><topic>conservation of momentum</topic><topic>electric fields</topic><topic>electron hole plasma</topic><topic>Holes (electron deficiencies)</topic><topic>Kinematics</topic><topic>low pass filters</topic><topic>MATHEMATICS AND COMPUTING</topic><topic>Maxwell equations</topic><topic>Particle in cell technique</topic><topic>particle-in-cell method</topic><topic>Plasma physics</topic><topic>spatial dimensions</topic><topic>speed of sound</topic><topic>Tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, C.</creatorcontrib><creatorcontrib>Hutchinson, I. H.</creatorcontrib><creatorcontrib>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physics of plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, C.</au><au>Hutchinson, I. H.</au><aucorp>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plasma electron hole kinematics. II. Hole tracking Particle-In-Cell simulation</atitle><jtitle>Physics of plasmas</jtitle><date>2016-08-01</date><risdate>2016</risdate><volume>23</volume><issue>8</issue><issn>1070-664X</issn><eissn>1089-7674</eissn><coden>PHPAEN</coden><abstract>The kinematics of a 1-D electron hole is studied using a novel Particle-In-Cell simulation code. A hole tracking technique enables us to follow the trajectory of a fast-moving solitary hole and study quantitatively hole acceleration and coupling to ions. We observe a transient at the initial stage of hole formation when the hole accelerates to several times the cold-ion sound speed. Artificially imposing slow ion speed changes on a fully formed hole causes its velocity to change even when the ion stream speed in the hole frame greatly exceeds the ion thermal speed, so there are no reflected ions. The behavior that we observe in numerical simulations agrees very well with our analytic theory of hole momentum conservation and the effects of “jetting.”</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4959871</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4276-6576</orcidid><orcidid>https://orcid.org/0000000342766576</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1070-664X
ispartof Physics of plasmas, 2016-08, Vol.23 (8)
issn 1070-664X
1089-7674
language eng
recordid cdi_osti_scitechconnect_1467859
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP Journals (American Institute of Physics)
subjects 70 PLASMA PHYSICS AND FUSION TECHNOLOGY
boundary value problems
Computer simulation
conservation of momentum
electric fields
electron hole plasma
Holes (electron deficiencies)
Kinematics
low pass filters
MATHEMATICS AND COMPUTING
Maxwell equations
Particle in cell technique
particle-in-cell method
Plasma physics
spatial dimensions
speed of sound
Tracking
title Plasma electron hole kinematics. II. Hole tracking Particle-In-Cell simulation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T07%3A34%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plasma%20electron%20hole%20kinematics.%20II.%20Hole%20tracking%20Particle-In-Cell%20simulation&rft.jtitle=Physics%20of%20plasmas&rft.au=Zhou,%20C.&rft.aucorp=Massachusetts%20Inst.%20of%20Technology%20(MIT),%20Cambridge,%20MA%20(United%20States)&rft.date=2016-08-01&rft.volume=23&rft.issue=8&rft.issn=1070-664X&rft.eissn=1089-7674&rft.coden=PHPAEN&rft_id=info:doi/10.1063/1.4959871&rft_dat=%3Cproquest_osti_%3E2121705832%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c459t-8973bcb21cb2361223972d3e1b2f98f06242fc377a3c56c2b9c84e27d1c21dc73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2121705832&rft_id=info:pmid/&rfr_iscdi=true