Loading…
Plasma electron hole kinematics. II. Hole tracking Particle-In-Cell simulation
The kinematics of a 1-D electron hole is studied using a novel Particle-In-Cell simulation code. A hole tracking technique enables us to follow the trajectory of a fast-moving solitary hole and study quantitatively hole acceleration and coupling to ions. We observe a transient at the initial stage o...
Saved in:
Published in: | Physics of plasmas 2016-08, Vol.23 (8) |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c459t-8973bcb21cb2361223972d3e1b2f98f06242fc377a3c56c2b9c84e27d1c21dc73 |
---|---|
cites | cdi_FETCH-LOGICAL-c459t-8973bcb21cb2361223972d3e1b2f98f06242fc377a3c56c2b9c84e27d1c21dc73 |
container_end_page | |
container_issue | 8 |
container_start_page | |
container_title | Physics of plasmas |
container_volume | 23 |
creator | Zhou, C. Hutchinson, I. H. |
description | The kinematics of a 1-D electron hole is studied using a novel Particle-In-Cell simulation code. A hole tracking technique enables us to follow the trajectory of a fast-moving solitary hole and study quantitatively hole acceleration and coupling to ions. We observe a transient at the initial stage of hole formation when the hole accelerates to several times the cold-ion sound speed. Artificially imposing slow ion speed changes on a fully formed hole causes its velocity to change even when the ion stream speed in the hole frame greatly exceeds the ion thermal speed, so there are no reflected ions. The behavior that we observe in numerical simulations agrees very well with our analytic theory of hole momentum conservation and the effects of “jetting.” |
doi_str_mv | 10.1063/1.4959871 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1467859</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2121705832</sourcerecordid><originalsourceid>FETCH-LOGICAL-c459t-8973bcb21cb2361223972d3e1b2f98f06242fc377a3c56c2b9c84e27d1c21dc73</originalsourceid><addsrcrecordid>eNp90E9LwzAUAPAgCs7pwW9Q9KTQmn9NmqMMdQXRHRS8hTRNXWfWzKQT_PamduhB8PDII-_HS94D4BTBDEFGrlBGRS4KjvbABMFCpJxxuj_kHKaM0ZdDcBTCCkJIWV5MwMPCqrBWibFG9951ydJZk7y1nVmrvtUhS8oyS-bDZe-VjoXXZKF8LFmTll06M9YmoV1vbeSuOwYHjbLBnOzOKXi-vXmazdP7x7tydn2fapqLPi0EJ5WuMIpBGMKYCI5rYlCFG1E0kGGKG004V0TnTONK6IIazGukMao1J1NwNvZ1oW9l0G1v9FK7rotTSEQZL3IR0fmINt69b03o5cptfRf_JTHCiMO8IDiqi1Fp70LwppEb366V_5QIymGnEsndTqO9HO3w4vfAP_jD-V8oN3XzH_7b-Qul14MB</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2121705832</pqid></control><display><type>article</type><title>Plasma electron hole kinematics. II. Hole tracking Particle-In-Cell simulation</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP Journals (American Institute of Physics)</source><creator>Zhou, C. ; Hutchinson, I. H.</creator><creatorcontrib>Zhou, C. ; Hutchinson, I. H. ; Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</creatorcontrib><description>The kinematics of a 1-D electron hole is studied using a novel Particle-In-Cell simulation code. A hole tracking technique enables us to follow the trajectory of a fast-moving solitary hole and study quantitatively hole acceleration and coupling to ions. We observe a transient at the initial stage of hole formation when the hole accelerates to several times the cold-ion sound speed. Artificially imposing slow ion speed changes on a fully formed hole causes its velocity to change even when the ion stream speed in the hole frame greatly exceeds the ion thermal speed, so there are no reflected ions. The behavior that we observe in numerical simulations agrees very well with our analytic theory of hole momentum conservation and the effects of “jetting.”</description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><identifier>DOI: 10.1063/1.4959871</identifier><identifier>CODEN: PHPAEN</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; boundary value problems ; Computer simulation ; conservation of momentum ; electric fields ; electron hole plasma ; Holes (electron deficiencies) ; Kinematics ; low pass filters ; MATHEMATICS AND COMPUTING ; Maxwell equations ; Particle in cell technique ; particle-in-cell method ; Plasma physics ; spatial dimensions ; speed of sound ; Tracking</subject><ispartof>Physics of plasmas, 2016-08, Vol.23 (8)</ispartof><rights>Author(s)</rights><rights>2016 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c459t-8973bcb21cb2361223972d3e1b2f98f06242fc377a3c56c2b9c84e27d1c21dc73</citedby><cites>FETCH-LOGICAL-c459t-8973bcb21cb2361223972d3e1b2f98f06242fc377a3c56c2b9c84e27d1c21dc73</cites><orcidid>0000-0003-4276-6576 ; 0000000342766576</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/pop/article-lookup/doi/10.1063/1.4959871$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,776,778,780,791,881,27901,27902,76125</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1467859$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, C.</creatorcontrib><creatorcontrib>Hutchinson, I. H.</creatorcontrib><creatorcontrib>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</creatorcontrib><title>Plasma electron hole kinematics. II. Hole tracking Particle-In-Cell simulation</title><title>Physics of plasmas</title><description>The kinematics of a 1-D electron hole is studied using a novel Particle-In-Cell simulation code. A hole tracking technique enables us to follow the trajectory of a fast-moving solitary hole and study quantitatively hole acceleration and coupling to ions. We observe a transient at the initial stage of hole formation when the hole accelerates to several times the cold-ion sound speed. Artificially imposing slow ion speed changes on a fully formed hole causes its velocity to change even when the ion stream speed in the hole frame greatly exceeds the ion thermal speed, so there are no reflected ions. The behavior that we observe in numerical simulations agrees very well with our analytic theory of hole momentum conservation and the effects of “jetting.”</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>boundary value problems</subject><subject>Computer simulation</subject><subject>conservation of momentum</subject><subject>electric fields</subject><subject>electron hole plasma</subject><subject>Holes (electron deficiencies)</subject><subject>Kinematics</subject><subject>low pass filters</subject><subject>MATHEMATICS AND COMPUTING</subject><subject>Maxwell equations</subject><subject>Particle in cell technique</subject><subject>particle-in-cell method</subject><subject>Plasma physics</subject><subject>spatial dimensions</subject><subject>speed of sound</subject><subject>Tracking</subject><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp90E9LwzAUAPAgCs7pwW9Q9KTQmn9NmqMMdQXRHRS8hTRNXWfWzKQT_PamduhB8PDII-_HS94D4BTBDEFGrlBGRS4KjvbABMFCpJxxuj_kHKaM0ZdDcBTCCkJIWV5MwMPCqrBWibFG9951ydJZk7y1nVmrvtUhS8oyS-bDZe-VjoXXZKF8LFmTll06M9YmoV1vbeSuOwYHjbLBnOzOKXi-vXmazdP7x7tydn2fapqLPi0EJ5WuMIpBGMKYCI5rYlCFG1E0kGGKG004V0TnTONK6IIazGukMao1J1NwNvZ1oW9l0G1v9FK7rotTSEQZL3IR0fmINt69b03o5cptfRf_JTHCiMO8IDiqi1Fp70LwppEb366V_5QIymGnEsndTqO9HO3w4vfAP_jD-V8oN3XzH_7b-Qul14MB</recordid><startdate>20160801</startdate><enddate>20160801</enddate><creator>Zhou, C.</creator><creator>Hutchinson, I. H.</creator><general>American Institute of Physics</general><general>American Institute of Physics (AIP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-4276-6576</orcidid><orcidid>https://orcid.org/0000000342766576</orcidid></search><sort><creationdate>20160801</creationdate><title>Plasma electron hole kinematics. II. Hole tracking Particle-In-Cell simulation</title><author>Zhou, C. ; Hutchinson, I. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c459t-8973bcb21cb2361223972d3e1b2f98f06242fc377a3c56c2b9c84e27d1c21dc73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>boundary value problems</topic><topic>Computer simulation</topic><topic>conservation of momentum</topic><topic>electric fields</topic><topic>electron hole plasma</topic><topic>Holes (electron deficiencies)</topic><topic>Kinematics</topic><topic>low pass filters</topic><topic>MATHEMATICS AND COMPUTING</topic><topic>Maxwell equations</topic><topic>Particle in cell technique</topic><topic>particle-in-cell method</topic><topic>Plasma physics</topic><topic>spatial dimensions</topic><topic>speed of sound</topic><topic>Tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, C.</creatorcontrib><creatorcontrib>Hutchinson, I. H.</creatorcontrib><creatorcontrib>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physics of plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, C.</au><au>Hutchinson, I. H.</au><aucorp>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plasma electron hole kinematics. II. Hole tracking Particle-In-Cell simulation</atitle><jtitle>Physics of plasmas</jtitle><date>2016-08-01</date><risdate>2016</risdate><volume>23</volume><issue>8</issue><issn>1070-664X</issn><eissn>1089-7674</eissn><coden>PHPAEN</coden><abstract>The kinematics of a 1-D electron hole is studied using a novel Particle-In-Cell simulation code. A hole tracking technique enables us to follow the trajectory of a fast-moving solitary hole and study quantitatively hole acceleration and coupling to ions. We observe a transient at the initial stage of hole formation when the hole accelerates to several times the cold-ion sound speed. Artificially imposing slow ion speed changes on a fully formed hole causes its velocity to change even when the ion stream speed in the hole frame greatly exceeds the ion thermal speed, so there are no reflected ions. The behavior that we observe in numerical simulations agrees very well with our analytic theory of hole momentum conservation and the effects of “jetting.”</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4959871</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4276-6576</orcidid><orcidid>https://orcid.org/0000000342766576</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-664X |
ispartof | Physics of plasmas, 2016-08, Vol.23 (8) |
issn | 1070-664X 1089-7674 |
language | eng |
recordid | cdi_osti_scitechconnect_1467859 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP Journals (American Institute of Physics) |
subjects | 70 PLASMA PHYSICS AND FUSION TECHNOLOGY boundary value problems Computer simulation conservation of momentum electric fields electron hole plasma Holes (electron deficiencies) Kinematics low pass filters MATHEMATICS AND COMPUTING Maxwell equations Particle in cell technique particle-in-cell method Plasma physics spatial dimensions speed of sound Tracking |
title | Plasma electron hole kinematics. II. Hole tracking Particle-In-Cell simulation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T07%3A34%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plasma%20electron%20hole%20kinematics.%20II.%20Hole%20tracking%20Particle-In-Cell%20simulation&rft.jtitle=Physics%20of%20plasmas&rft.au=Zhou,%20C.&rft.aucorp=Massachusetts%20Inst.%20of%20Technology%20(MIT),%20Cambridge,%20MA%20(United%20States)&rft.date=2016-08-01&rft.volume=23&rft.issue=8&rft.issn=1070-664X&rft.eissn=1089-7674&rft.coden=PHPAEN&rft_id=info:doi/10.1063/1.4959871&rft_dat=%3Cproquest_osti_%3E2121705832%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c459t-8973bcb21cb2361223972d3e1b2f98f06242fc377a3c56c2b9c84e27d1c21dc73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2121705832&rft_id=info:pmid/&rfr_iscdi=true |