Loading…
Reaction of CO2 with UO3 Nanoclusters
Adsorption of CO2 to uranium oxide, (UO3) n , clusters was modeled using density functional theory (DFT) and coupled cluster theory (CCSD(T)). Geometries and reaction energies were predicted for carbonate formation (chemisorption) and Lewis acid–base addition of CO2 (physisorption) to these (UO3) n...
Saved in:
Published in: | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2017-11, Vol.121 (44), p.8518-8524 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 8524 |
container_issue | 44 |
container_start_page | 8518 |
container_title | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory |
container_volume | 121 |
creator | Flores, Luis A Murphy, Julia G Copeland, William B Dixon, David A |
description | Adsorption of CO2 to uranium oxide, (UO3) n , clusters was modeled using density functional theory (DFT) and coupled cluster theory (CCSD(T)). Geometries and reaction energies were predicted for carbonate formation (chemisorption) and Lewis acid–base addition of CO2 (physisorption) to these (UO3) n clusters. Chemisorption of multiple CO2 moieties was also modeled for dimer and trimer clusters. Physisorption and chemisorption were both predicted to be thermodynamically allowed for (UO3) n clusters, with chemisorption being more thermodynamically favorable than physisorption. The most energetically favored (UO3)3(CO2) m clusters contain tridentate carbonates, which is consistent with solid-state and solution structures for uranyl carbonates. The calculations show that CO2 exposure is likely to convert (UO3) n to uranyl carbonates. |
doi_str_mv | 10.1021/acs.jpca.7b09107 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1470291</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1951414342</sourcerecordid><originalsourceid>FETCH-LOGICAL-a252t-b0fb754defc1e4d40a01ea0c85340513032b6e67d1d1283999df64a877e755423</originalsourceid><addsrcrecordid>eNotkEtLw0AUhQdRsFb3LoMguDD13nlkMksp9QHFgtj1MJnc0JSYqZ0J_n1j29U9XD4Oh4-xW4QZAscn5-Nsu_NupiswCPqMTVBxyBVHdT5mKE2uCmEu2VWMWwBAweWE3X-S86kNfRaabL7i2W-bNtl6JbIP1wffDTHRPl6zi8Z1kW5Od8rWL4uv-Vu-XL2-z5-XueOKp7yCptJK1tR4JFlLcIDkwJdKSFAoQPCqoELXWCMvhTGmbgrpSq1JKyW5mLK7Y2-IqbXRt4n8xoe-J58sSg3c4Ag9HKHdPvwMFJP9bqOnrnM9hSFaNAolSnHoezyiox27DcO-H9dbBPuvzB6eozJ7Uib-AB7jXOc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1951414342</pqid></control><display><type>article</type><title>Reaction of CO2 with UO3 Nanoclusters</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Flores, Luis A ; Murphy, Julia G ; Copeland, William B ; Dixon, David A</creator><creatorcontrib>Flores, Luis A ; Murphy, Julia G ; Copeland, William B ; Dixon, David A ; Georgia Inst. of Technology, Atlanta, GA (United States). Energy Frontier Research Center (EFRC) Center for Understanding and Control of Acid Gas-induced Evolution of Materials for Energy (UNCAGE-ME)</creatorcontrib><description>Adsorption of CO2 to uranium oxide, (UO3) n , clusters was modeled using density functional theory (DFT) and coupled cluster theory (CCSD(T)). Geometries and reaction energies were predicted for carbonate formation (chemisorption) and Lewis acid–base addition of CO2 (physisorption) to these (UO3) n clusters. Chemisorption of multiple CO2 moieties was also modeled for dimer and trimer clusters. Physisorption and chemisorption were both predicted to be thermodynamically allowed for (UO3) n clusters, with chemisorption being more thermodynamically favorable than physisorption. The most energetically favored (UO3)3(CO2) m clusters contain tridentate carbonates, which is consistent with solid-state and solution structures for uranyl carbonates. The calculations show that CO2 exposure is likely to convert (UO3) n to uranyl carbonates.</description><identifier>ISSN: 1089-5639</identifier><identifier>EISSN: 1520-5215</identifier><identifier>DOI: 10.1021/acs.jpca.7b09107</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><ispartof>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2017-11, Vol.121 (44), p.8518-8524</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-9492-0056 ; 0000000294920056</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1470291$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Flores, Luis A</creatorcontrib><creatorcontrib>Murphy, Julia G</creatorcontrib><creatorcontrib>Copeland, William B</creatorcontrib><creatorcontrib>Dixon, David A</creatorcontrib><creatorcontrib>Georgia Inst. of Technology, Atlanta, GA (United States). Energy Frontier Research Center (EFRC) Center for Understanding and Control of Acid Gas-induced Evolution of Materials for Energy (UNCAGE-ME)</creatorcontrib><title>Reaction of CO2 with UO3 Nanoclusters</title><title>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory</title><addtitle>J. Phys. Chem. A</addtitle><description>Adsorption of CO2 to uranium oxide, (UO3) n , clusters was modeled using density functional theory (DFT) and coupled cluster theory (CCSD(T)). Geometries and reaction energies were predicted for carbonate formation (chemisorption) and Lewis acid–base addition of CO2 (physisorption) to these (UO3) n clusters. Chemisorption of multiple CO2 moieties was also modeled for dimer and trimer clusters. Physisorption and chemisorption were both predicted to be thermodynamically allowed for (UO3) n clusters, with chemisorption being more thermodynamically favorable than physisorption. The most energetically favored (UO3)3(CO2) m clusters contain tridentate carbonates, which is consistent with solid-state and solution structures for uranyl carbonates. The calculations show that CO2 exposure is likely to convert (UO3) n to uranyl carbonates.</description><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><issn>1089-5639</issn><issn>1520-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNotkEtLw0AUhQdRsFb3LoMguDD13nlkMksp9QHFgtj1MJnc0JSYqZ0J_n1j29U9XD4Oh4-xW4QZAscn5-Nsu_NupiswCPqMTVBxyBVHdT5mKE2uCmEu2VWMWwBAweWE3X-S86kNfRaabL7i2W-bNtl6JbIP1wffDTHRPl6zi8Z1kW5Od8rWL4uv-Vu-XL2-z5-XueOKp7yCptJK1tR4JFlLcIDkwJdKSFAoQPCqoELXWCMvhTGmbgrpSq1JKyW5mLK7Y2-IqbXRt4n8xoe-J58sSg3c4Ag9HKHdPvwMFJP9bqOnrnM9hSFaNAolSnHoezyiox27DcO-H9dbBPuvzB6eozJ7Uib-AB7jXOc</recordid><startdate>20171109</startdate><enddate>20171109</enddate><creator>Flores, Luis A</creator><creator>Murphy, Julia G</creator><creator>Copeland, William B</creator><creator>Dixon, David A</creator><general>American Chemical Society</general><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-9492-0056</orcidid><orcidid>https://orcid.org/0000000294920056</orcidid></search><sort><creationdate>20171109</creationdate><title>Reaction of CO2 with UO3 Nanoclusters</title><author>Flores, Luis A ; Murphy, Julia G ; Copeland, William B ; Dixon, David A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a252t-b0fb754defc1e4d40a01ea0c85340513032b6e67d1d1283999df64a877e755423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Flores, Luis A</creatorcontrib><creatorcontrib>Murphy, Julia G</creatorcontrib><creatorcontrib>Copeland, William B</creatorcontrib><creatorcontrib>Dixon, David A</creatorcontrib><creatorcontrib>Georgia Inst. of Technology, Atlanta, GA (United States). Energy Frontier Research Center (EFRC) Center for Understanding and Control of Acid Gas-induced Evolution of Materials for Energy (UNCAGE-ME)</creatorcontrib><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Flores, Luis A</au><au>Murphy, Julia G</au><au>Copeland, William B</au><au>Dixon, David A</au><aucorp>Georgia Inst. of Technology, Atlanta, GA (United States). Energy Frontier Research Center (EFRC) Center for Understanding and Control of Acid Gas-induced Evolution of Materials for Energy (UNCAGE-ME)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reaction of CO2 with UO3 Nanoclusters</atitle><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory</jtitle><addtitle>J. Phys. Chem. A</addtitle><date>2017-11-09</date><risdate>2017</risdate><volume>121</volume><issue>44</issue><spage>8518</spage><epage>8524</epage><pages>8518-8524</pages><issn>1089-5639</issn><eissn>1520-5215</eissn><abstract>Adsorption of CO2 to uranium oxide, (UO3) n , clusters was modeled using density functional theory (DFT) and coupled cluster theory (CCSD(T)). Geometries and reaction energies were predicted for carbonate formation (chemisorption) and Lewis acid–base addition of CO2 (physisorption) to these (UO3) n clusters. Chemisorption of multiple CO2 moieties was also modeled for dimer and trimer clusters. Physisorption and chemisorption were both predicted to be thermodynamically allowed for (UO3) n clusters, with chemisorption being more thermodynamically favorable than physisorption. The most energetically favored (UO3)3(CO2) m clusters contain tridentate carbonates, which is consistent with solid-state and solution structures for uranyl carbonates. The calculations show that CO2 exposure is likely to convert (UO3) n to uranyl carbonates.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acs.jpca.7b09107</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-9492-0056</orcidid><orcidid>https://orcid.org/0000000294920056</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1089-5639 |
ispartof | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2017-11, Vol.121 (44), p.8518-8524 |
issn | 1089-5639 1520-5215 |
language | eng |
recordid | cdi_osti_scitechconnect_1470291 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY |
title | Reaction of CO2 with UO3 Nanoclusters |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T07%3A05%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reaction%20of%20CO2%20with%20UO3%20Nanoclusters&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20A,%20Molecules,%20spectroscopy,%20kinetics,%20environment,%20&%20general%20theory&rft.au=Flores,%20Luis%20A&rft.aucorp=Georgia%20Inst.%20of%20Technology,%20Atlanta,%20GA%20(United%20States).%20Energy%20Frontier%20Research%20Center%20(EFRC)%20Center%20for%20Understanding%20and%20Control%20of%20Acid%20Gas-induced%20Evolution%20of%20Materials%20for%20Energy%20(UNCAGE-ME)&rft.date=2017-11-09&rft.volume=121&rft.issue=44&rft.spage=8518&rft.epage=8524&rft.pages=8518-8524&rft.issn=1089-5639&rft.eissn=1520-5215&rft_id=info:doi/10.1021/acs.jpca.7b09107&rft_dat=%3Cproquest_osti_%3E1951414342%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a252t-b0fb754defc1e4d40a01ea0c85340513032b6e67d1d1283999df64a877e755423%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1951414342&rft_id=info:pmid/&rfr_iscdi=true |