Loading…

Reaction of CO2 with UO3 Nanoclusters

Adsorption of CO2 to uranium oxide, (UO3) n , clusters was modeled using density functional theory (DFT) and coupled cluster theory (CCSD­(T)). Geometries and reaction energies were predicted for carbonate formation (chemisorption) and Lewis acid–base addition of CO2 (physisorption) to these (UO3) n...

Full description

Saved in:
Bibliographic Details
Published in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2017-11, Vol.121 (44), p.8518-8524
Main Authors: Flores, Luis A, Murphy, Julia G, Copeland, William B, Dixon, David A
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 8524
container_issue 44
container_start_page 8518
container_title The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory
container_volume 121
creator Flores, Luis A
Murphy, Julia G
Copeland, William B
Dixon, David A
description Adsorption of CO2 to uranium oxide, (UO3) n , clusters was modeled using density functional theory (DFT) and coupled cluster theory (CCSD­(T)). Geometries and reaction energies were predicted for carbonate formation (chemisorption) and Lewis acid–base addition of CO2 (physisorption) to these (UO3) n clusters. Chemisorption of multiple CO2 moieties was also modeled for dimer and trimer clusters. Physisorption and chemisorption were both predicted to be thermodynamically allowed for (UO3) n clusters, with chemisorption being more thermodynamically favorable than physisorption. The most energetically favored (UO3)3(CO2) m clusters contain tridentate carbonates, which is consistent with solid-state and solution structures for uranyl carbonates. The calculations show that CO2 exposure is likely to convert (UO3) n to uranyl carbonates.
doi_str_mv 10.1021/acs.jpca.7b09107
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1470291</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1951414342</sourcerecordid><originalsourceid>FETCH-LOGICAL-a252t-b0fb754defc1e4d40a01ea0c85340513032b6e67d1d1283999df64a877e755423</originalsourceid><addsrcrecordid>eNotkEtLw0AUhQdRsFb3LoMguDD13nlkMksp9QHFgtj1MJnc0JSYqZ0J_n1j29U9XD4Oh4-xW4QZAscn5-Nsu_NupiswCPqMTVBxyBVHdT5mKE2uCmEu2VWMWwBAweWE3X-S86kNfRaabL7i2W-bNtl6JbIP1wffDTHRPl6zi8Z1kW5Od8rWL4uv-Vu-XL2-z5-XueOKp7yCptJK1tR4JFlLcIDkwJdKSFAoQPCqoELXWCMvhTGmbgrpSq1JKyW5mLK7Y2-IqbXRt4n8xoe-J58sSg3c4Ag9HKHdPvwMFJP9bqOnrnM9hSFaNAolSnHoezyiox27DcO-H9dbBPuvzB6eozJ7Uib-AB7jXOc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1951414342</pqid></control><display><type>article</type><title>Reaction of CO2 with UO3 Nanoclusters</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Flores, Luis A ; Murphy, Julia G ; Copeland, William B ; Dixon, David A</creator><creatorcontrib>Flores, Luis A ; Murphy, Julia G ; Copeland, William B ; Dixon, David A ; Georgia Inst. of Technology, Atlanta, GA (United States). Energy Frontier Research Center (EFRC) Center for Understanding and Control of Acid Gas-induced Evolution of Materials for Energy (UNCAGE-ME)</creatorcontrib><description>Adsorption of CO2 to uranium oxide, (UO3) n , clusters was modeled using density functional theory (DFT) and coupled cluster theory (CCSD­(T)). Geometries and reaction energies were predicted for carbonate formation (chemisorption) and Lewis acid–base addition of CO2 (physisorption) to these (UO3) n clusters. Chemisorption of multiple CO2 moieties was also modeled for dimer and trimer clusters. Physisorption and chemisorption were both predicted to be thermodynamically allowed for (UO3) n clusters, with chemisorption being more thermodynamically favorable than physisorption. The most energetically favored (UO3)3(CO2) m clusters contain tridentate carbonates, which is consistent with solid-state and solution structures for uranyl carbonates. The calculations show that CO2 exposure is likely to convert (UO3) n to uranyl carbonates.</description><identifier>ISSN: 1089-5639</identifier><identifier>EISSN: 1520-5215</identifier><identifier>DOI: 10.1021/acs.jpca.7b09107</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><ispartof>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory, 2017-11, Vol.121 (44), p.8518-8524</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-9492-0056 ; 0000000294920056</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1470291$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Flores, Luis A</creatorcontrib><creatorcontrib>Murphy, Julia G</creatorcontrib><creatorcontrib>Copeland, William B</creatorcontrib><creatorcontrib>Dixon, David A</creatorcontrib><creatorcontrib>Georgia Inst. of Technology, Atlanta, GA (United States). Energy Frontier Research Center (EFRC) Center for Understanding and Control of Acid Gas-induced Evolution of Materials for Energy (UNCAGE-ME)</creatorcontrib><title>Reaction of CO2 with UO3 Nanoclusters</title><title>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</title><addtitle>J. Phys. Chem. A</addtitle><description>Adsorption of CO2 to uranium oxide, (UO3) n , clusters was modeled using density functional theory (DFT) and coupled cluster theory (CCSD­(T)). Geometries and reaction energies were predicted for carbonate formation (chemisorption) and Lewis acid–base addition of CO2 (physisorption) to these (UO3) n clusters. Chemisorption of multiple CO2 moieties was also modeled for dimer and trimer clusters. Physisorption and chemisorption were both predicted to be thermodynamically allowed for (UO3) n clusters, with chemisorption being more thermodynamically favorable than physisorption. The most energetically favored (UO3)3(CO2) m clusters contain tridentate carbonates, which is consistent with solid-state and solution structures for uranyl carbonates. The calculations show that CO2 exposure is likely to convert (UO3) n to uranyl carbonates.</description><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><issn>1089-5639</issn><issn>1520-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNotkEtLw0AUhQdRsFb3LoMguDD13nlkMksp9QHFgtj1MJnc0JSYqZ0J_n1j29U9XD4Oh4-xW4QZAscn5-Nsu_NupiswCPqMTVBxyBVHdT5mKE2uCmEu2VWMWwBAweWE3X-S86kNfRaabL7i2W-bNtl6JbIP1wffDTHRPl6zi8Z1kW5Od8rWL4uv-Vu-XL2-z5-XueOKp7yCptJK1tR4JFlLcIDkwJdKSFAoQPCqoELXWCMvhTGmbgrpSq1JKyW5mLK7Y2-IqbXRt4n8xoe-J58sSg3c4Ag9HKHdPvwMFJP9bqOnrnM9hSFaNAolSnHoezyiox27DcO-H9dbBPuvzB6eozJ7Uib-AB7jXOc</recordid><startdate>20171109</startdate><enddate>20171109</enddate><creator>Flores, Luis A</creator><creator>Murphy, Julia G</creator><creator>Copeland, William B</creator><creator>Dixon, David A</creator><general>American Chemical Society</general><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-9492-0056</orcidid><orcidid>https://orcid.org/0000000294920056</orcidid></search><sort><creationdate>20171109</creationdate><title>Reaction of CO2 with UO3 Nanoclusters</title><author>Flores, Luis A ; Murphy, Julia G ; Copeland, William B ; Dixon, David A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a252t-b0fb754defc1e4d40a01ea0c85340513032b6e67d1d1283999df64a877e755423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Flores, Luis A</creatorcontrib><creatorcontrib>Murphy, Julia G</creatorcontrib><creatorcontrib>Copeland, William B</creatorcontrib><creatorcontrib>Dixon, David A</creatorcontrib><creatorcontrib>Georgia Inst. of Technology, Atlanta, GA (United States). Energy Frontier Research Center (EFRC) Center for Understanding and Control of Acid Gas-induced Evolution of Materials for Energy (UNCAGE-ME)</creatorcontrib><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Flores, Luis A</au><au>Murphy, Julia G</au><au>Copeland, William B</au><au>Dixon, David A</au><aucorp>Georgia Inst. of Technology, Atlanta, GA (United States). Energy Frontier Research Center (EFRC) Center for Understanding and Control of Acid Gas-induced Evolution of Materials for Energy (UNCAGE-ME)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reaction of CO2 with UO3 Nanoclusters</atitle><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle><addtitle>J. Phys. Chem. A</addtitle><date>2017-11-09</date><risdate>2017</risdate><volume>121</volume><issue>44</issue><spage>8518</spage><epage>8524</epage><pages>8518-8524</pages><issn>1089-5639</issn><eissn>1520-5215</eissn><abstract>Adsorption of CO2 to uranium oxide, (UO3) n , clusters was modeled using density functional theory (DFT) and coupled cluster theory (CCSD­(T)). Geometries and reaction energies were predicted for carbonate formation (chemisorption) and Lewis acid–base addition of CO2 (physisorption) to these (UO3) n clusters. Chemisorption of multiple CO2 moieties was also modeled for dimer and trimer clusters. Physisorption and chemisorption were both predicted to be thermodynamically allowed for (UO3) n clusters, with chemisorption being more thermodynamically favorable than physisorption. The most energetically favored (UO3)3(CO2) m clusters contain tridentate carbonates, which is consistent with solid-state and solution structures for uranyl carbonates. The calculations show that CO2 exposure is likely to convert (UO3) n to uranyl carbonates.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acs.jpca.7b09107</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-9492-0056</orcidid><orcidid>https://orcid.org/0000000294920056</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1089-5639
ispartof The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2017-11, Vol.121 (44), p.8518-8524
issn 1089-5639
1520-5215
language eng
recordid cdi_osti_scitechconnect_1470291
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
title Reaction of CO2 with UO3 Nanoclusters
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T07%3A05%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reaction%20of%20CO2%20with%20UO3%20Nanoclusters&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20A,%20Molecules,%20spectroscopy,%20kinetics,%20environment,%20&%20general%20theory&rft.au=Flores,%20Luis%20A&rft.aucorp=Georgia%20Inst.%20of%20Technology,%20Atlanta,%20GA%20(United%20States).%20Energy%20Frontier%20Research%20Center%20(EFRC)%20Center%20for%20Understanding%20and%20Control%20of%20Acid%20Gas-induced%20Evolution%20of%20Materials%20for%20Energy%20(UNCAGE-ME)&rft.date=2017-11-09&rft.volume=121&rft.issue=44&rft.spage=8518&rft.epage=8524&rft.pages=8518-8524&rft.issn=1089-5639&rft.eissn=1520-5215&rft_id=info:doi/10.1021/acs.jpca.7b09107&rft_dat=%3Cproquest_osti_%3E1951414342%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a252t-b0fb754defc1e4d40a01ea0c85340513032b6e67d1d1283999df64a877e755423%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1951414342&rft_id=info:pmid/&rfr_iscdi=true