Loading…
KVOPO4: A New High Capacity Multielectron Na‐Ion Battery Cathode
Sodium ion batteries have attracted much attention in recent years, due to the higher abundance and lower cost of sodium, as an alternative to lithium ion batteries. However, a major challenge is their lower energy density. In this work, we report a novel multi‐electron cathode material, KVOPO4, for...
Saved in:
Published in: | Advanced energy materials 2018-07, Vol.8 (21), p.n/a |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | n/a |
container_issue | 21 |
container_start_page | |
container_title | Advanced energy materials |
container_volume | 8 |
creator | Ding, Jia Lin, Yuh‐Chieh Liu, Jue Rana, Jatinkumar Zhang, Hanlei Zhou, Hui Chu, Iek‐Heng Wiaderek, Kamila M. Omenya, Fredrick Chernova, Natasha A. Chapman, Karena W. Piper, Louis F. J. Ong, Shyue Ping Whittingham, M. Stanley |
description | Sodium ion batteries have attracted much attention in recent years, due to the higher abundance and lower cost of sodium, as an alternative to lithium ion batteries. However, a major challenge is their lower energy density. In this work, we report a novel multi‐electron cathode material, KVOPO4, for sodium ion batteries. Due to the unique polyhedral framework, the V3+ ↔ V4+ ↔ V5+ redox couple was for the first time fully activated by sodium ions in a vanadyl phosphate phase. The KVOPO4 based cathode delivered reversible multiple sodium (i.e. maximum 1.66 Na+ per formula unit) storage capability, which leads to a high specific capacity of 235 Ah kg−1. Combining an average voltage of 2.56 V vs. Na/Na+, a high practical energy density of over 600 Wh kg−1 was achieved, the highest yet reported for any sodium cathode material. The cathode exhibits a very small volume change upon cycling (1.4% for 0.64 sodium and 8.0% for 1.66 sodium ions). Density functional theory (DFT) calculations indicate that the KVOPO4 framework is a 3D ionic conductor with a reasonably, low Na+ migration energy barrier of ≈450 meV, in line with the good rate capability obtained.
KyVOPO4, is a new intercalation host for sodium batteries. The V3+ ↔ V4+ ↔ V5+ redox couple is for the first time fully activated by sodium ions in a vanadyl phosphate phase, delivering a high specific capacity of 235 Ah kg−1, and an energy density of over 600 Wh kg−1. |
doi_str_mv | 10.1002/aenm.201800221 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1470548</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2075520440</sourcerecordid><originalsourceid>FETCH-LOGICAL-g4051-758d3da434b93cf59f89d4ca98cff07918ab9d2b6b0abde532dfa4d3f5fa210f3</originalsourceid><addsrcrecordid>eNo9kEtPwkAUhSdGE4mydd3ounjnRTvugKAQebhQt5PpPKCktNgOId35E_yN_hKHYLibc07y5ebkIHSHoYcByKOy5bZHAKchEHyBOriPWdxPGVyePSXXqNs0GwjHBAZKO2j4-rl8W7KnaBAt7CGa5Kt1NFI7pXPfRvN94XNbWO3rqowW6vf7ZxrMUHlv6zZwfl0Ze4uunCoa2_3XG_TxPH4fTeLZ8mU6GsziFQOO44SnhhrFKMsE1Y4LlwrDtBKpdg4SgVOVCUOyfgYqM5ZTYpxihjruFMHg6A26P_2tGp_LJjS0eq2rsgz9JGYJcJYG6OEE7erqa28bLzfVvi5DL0kg4ZwAYxAocaIOeWFbuavzrapbiUEex5THMeV5TDkYL-bnRP8AiUppFw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2075520440</pqid></control><display><type>article</type><title>KVOPO4: A New High Capacity Multielectron Na‐Ion Battery Cathode</title><source>Wiley</source><creator>Ding, Jia ; Lin, Yuh‐Chieh ; Liu, Jue ; Rana, Jatinkumar ; Zhang, Hanlei ; Zhou, Hui ; Chu, Iek‐Heng ; Wiaderek, Kamila M. ; Omenya, Fredrick ; Chernova, Natasha A. ; Chapman, Karena W. ; Piper, Louis F. J. ; Ong, Shyue Ping ; Whittingham, M. Stanley</creator><creatorcontrib>Ding, Jia ; Lin, Yuh‐Chieh ; Liu, Jue ; Rana, Jatinkumar ; Zhang, Hanlei ; Zhou, Hui ; Chu, Iek‐Heng ; Wiaderek, Kamila M. ; Omenya, Fredrick ; Chernova, Natasha A. ; Chapman, Karena W. ; Piper, Louis F. J. ; Ong, Shyue Ping ; Whittingham, M. Stanley ; Energy Frontier Research Centers (EFRC) (United States). Northeastern Center for Chemical Energy Storage (NECCES)</creatorcontrib><description>Sodium ion batteries have attracted much attention in recent years, due to the higher abundance and lower cost of sodium, as an alternative to lithium ion batteries. However, a major challenge is their lower energy density. In this work, we report a novel multi‐electron cathode material, KVOPO4, for sodium ion batteries. Due to the unique polyhedral framework, the V3+ ↔ V4+ ↔ V5+ redox couple was for the first time fully activated by sodium ions in a vanadyl phosphate phase. The KVOPO4 based cathode delivered reversible multiple sodium (i.e. maximum 1.66 Na+ per formula unit) storage capability, which leads to a high specific capacity of 235 Ah kg−1. Combining an average voltage of 2.56 V vs. Na/Na+, a high practical energy density of over 600 Wh kg−1 was achieved, the highest yet reported for any sodium cathode material. The cathode exhibits a very small volume change upon cycling (1.4% for 0.64 sodium and 8.0% for 1.66 sodium ions). Density functional theory (DFT) calculations indicate that the KVOPO4 framework is a 3D ionic conductor with a reasonably, low Na+ migration energy barrier of ≈450 meV, in line with the good rate capability obtained.
KyVOPO4, is a new intercalation host for sodium batteries. The V3+ ↔ V4+ ↔ V5+ redox couple is for the first time fully activated by sodium ions in a vanadyl phosphate phase, delivering a high specific capacity of 235 Ah kg−1, and an energy density of over 600 Wh kg−1.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.201800221</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Cathodes ; Conductors ; Density functional theory ; Electrode materials ; energy storage (including batteries and capacitors), defects, charge transport, materials and chemistry by design, synthesis (novel materials) ; Flux density ; high capacity ; high energy ; Lithium ; Lithium-ion batteries ; Migration ; multielectron ; Rechargeable batteries ; Sodium ; Sodium-ion batteries ; vanadyl phosphate</subject><ispartof>Advanced energy materials, 2018-07, Vol.8 (21), p.n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-5039-9334 ; 0000000250399334</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1470548$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ding, Jia</creatorcontrib><creatorcontrib>Lin, Yuh‐Chieh</creatorcontrib><creatorcontrib>Liu, Jue</creatorcontrib><creatorcontrib>Rana, Jatinkumar</creatorcontrib><creatorcontrib>Zhang, Hanlei</creatorcontrib><creatorcontrib>Zhou, Hui</creatorcontrib><creatorcontrib>Chu, Iek‐Heng</creatorcontrib><creatorcontrib>Wiaderek, Kamila M.</creatorcontrib><creatorcontrib>Omenya, Fredrick</creatorcontrib><creatorcontrib>Chernova, Natasha A.</creatorcontrib><creatorcontrib>Chapman, Karena W.</creatorcontrib><creatorcontrib>Piper, Louis F. J.</creatorcontrib><creatorcontrib>Ong, Shyue Ping</creatorcontrib><creatorcontrib>Whittingham, M. Stanley</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Northeastern Center for Chemical Energy Storage (NECCES)</creatorcontrib><title>KVOPO4: A New High Capacity Multielectron Na‐Ion Battery Cathode</title><title>Advanced energy materials</title><description>Sodium ion batteries have attracted much attention in recent years, due to the higher abundance and lower cost of sodium, as an alternative to lithium ion batteries. However, a major challenge is their lower energy density. In this work, we report a novel multi‐electron cathode material, KVOPO4, for sodium ion batteries. Due to the unique polyhedral framework, the V3+ ↔ V4+ ↔ V5+ redox couple was for the first time fully activated by sodium ions in a vanadyl phosphate phase. The KVOPO4 based cathode delivered reversible multiple sodium (i.e. maximum 1.66 Na+ per formula unit) storage capability, which leads to a high specific capacity of 235 Ah kg−1. Combining an average voltage of 2.56 V vs. Na/Na+, a high practical energy density of over 600 Wh kg−1 was achieved, the highest yet reported for any sodium cathode material. The cathode exhibits a very small volume change upon cycling (1.4% for 0.64 sodium and 8.0% for 1.66 sodium ions). Density functional theory (DFT) calculations indicate that the KVOPO4 framework is a 3D ionic conductor with a reasonably, low Na+ migration energy barrier of ≈450 meV, in line with the good rate capability obtained.
KyVOPO4, is a new intercalation host for sodium batteries. The V3+ ↔ V4+ ↔ V5+ redox couple is for the first time fully activated by sodium ions in a vanadyl phosphate phase, delivering a high specific capacity of 235 Ah kg−1, and an energy density of over 600 Wh kg−1.</description><subject>Cathodes</subject><subject>Conductors</subject><subject>Density functional theory</subject><subject>Electrode materials</subject><subject>energy storage (including batteries and capacitors), defects, charge transport, materials and chemistry by design, synthesis (novel materials)</subject><subject>Flux density</subject><subject>high capacity</subject><subject>high energy</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Migration</subject><subject>multielectron</subject><subject>Rechargeable batteries</subject><subject>Sodium</subject><subject>Sodium-ion batteries</subject><subject>vanadyl phosphate</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kEtPwkAUhSdGE4mydd3ounjnRTvugKAQebhQt5PpPKCktNgOId35E_yN_hKHYLibc07y5ebkIHSHoYcByKOy5bZHAKchEHyBOriPWdxPGVyePSXXqNs0GwjHBAZKO2j4-rl8W7KnaBAt7CGa5Kt1NFI7pXPfRvN94XNbWO3rqowW6vf7ZxrMUHlv6zZwfl0Ze4uunCoa2_3XG_TxPH4fTeLZ8mU6GsziFQOO44SnhhrFKMsE1Y4LlwrDtBKpdg4SgVOVCUOyfgYqM5ZTYpxihjruFMHg6A26P_2tGp_LJjS0eq2rsgz9JGYJcJYG6OEE7erqa28bLzfVvi5DL0kg4ZwAYxAocaIOeWFbuavzrapbiUEex5THMeV5TDkYL-bnRP8AiUppFw</recordid><startdate>20180725</startdate><enddate>20180725</enddate><creator>Ding, Jia</creator><creator>Lin, Yuh‐Chieh</creator><creator>Liu, Jue</creator><creator>Rana, Jatinkumar</creator><creator>Zhang, Hanlei</creator><creator>Zhou, Hui</creator><creator>Chu, Iek‐Heng</creator><creator>Wiaderek, Kamila M.</creator><creator>Omenya, Fredrick</creator><creator>Chernova, Natasha A.</creator><creator>Chapman, Karena W.</creator><creator>Piper, Louis F. J.</creator><creator>Ong, Shyue Ping</creator><creator>Whittingham, M. Stanley</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-5039-9334</orcidid><orcidid>https://orcid.org/0000000250399334</orcidid></search><sort><creationdate>20180725</creationdate><title>KVOPO4: A New High Capacity Multielectron Na‐Ion Battery Cathode</title><author>Ding, Jia ; Lin, Yuh‐Chieh ; Liu, Jue ; Rana, Jatinkumar ; Zhang, Hanlei ; Zhou, Hui ; Chu, Iek‐Heng ; Wiaderek, Kamila M. ; Omenya, Fredrick ; Chernova, Natasha A. ; Chapman, Karena W. ; Piper, Louis F. J. ; Ong, Shyue Ping ; Whittingham, M. Stanley</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g4051-758d3da434b93cf59f89d4ca98cff07918ab9d2b6b0abde532dfa4d3f5fa210f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Cathodes</topic><topic>Conductors</topic><topic>Density functional theory</topic><topic>Electrode materials</topic><topic>energy storage (including batteries and capacitors), defects, charge transport, materials and chemistry by design, synthesis (novel materials)</topic><topic>Flux density</topic><topic>high capacity</topic><topic>high energy</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Migration</topic><topic>multielectron</topic><topic>Rechargeable batteries</topic><topic>Sodium</topic><topic>Sodium-ion batteries</topic><topic>vanadyl phosphate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, Jia</creatorcontrib><creatorcontrib>Lin, Yuh‐Chieh</creatorcontrib><creatorcontrib>Liu, Jue</creatorcontrib><creatorcontrib>Rana, Jatinkumar</creatorcontrib><creatorcontrib>Zhang, Hanlei</creatorcontrib><creatorcontrib>Zhou, Hui</creatorcontrib><creatorcontrib>Chu, Iek‐Heng</creatorcontrib><creatorcontrib>Wiaderek, Kamila M.</creatorcontrib><creatorcontrib>Omenya, Fredrick</creatorcontrib><creatorcontrib>Chernova, Natasha A.</creatorcontrib><creatorcontrib>Chapman, Karena W.</creatorcontrib><creatorcontrib>Piper, Louis F. J.</creatorcontrib><creatorcontrib>Ong, Shyue Ping</creatorcontrib><creatorcontrib>Whittingham, M. Stanley</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Northeastern Center for Chemical Energy Storage (NECCES)</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, Jia</au><au>Lin, Yuh‐Chieh</au><au>Liu, Jue</au><au>Rana, Jatinkumar</au><au>Zhang, Hanlei</au><au>Zhou, Hui</au><au>Chu, Iek‐Heng</au><au>Wiaderek, Kamila M.</au><au>Omenya, Fredrick</au><au>Chernova, Natasha A.</au><au>Chapman, Karena W.</au><au>Piper, Louis F. J.</au><au>Ong, Shyue Ping</au><au>Whittingham, M. Stanley</au><aucorp>Energy Frontier Research Centers (EFRC) (United States). Northeastern Center for Chemical Energy Storage (NECCES)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>KVOPO4: A New High Capacity Multielectron Na‐Ion Battery Cathode</atitle><jtitle>Advanced energy materials</jtitle><date>2018-07-25</date><risdate>2018</risdate><volume>8</volume><issue>21</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Sodium ion batteries have attracted much attention in recent years, due to the higher abundance and lower cost of sodium, as an alternative to lithium ion batteries. However, a major challenge is their lower energy density. In this work, we report a novel multi‐electron cathode material, KVOPO4, for sodium ion batteries. Due to the unique polyhedral framework, the V3+ ↔ V4+ ↔ V5+ redox couple was for the first time fully activated by sodium ions in a vanadyl phosphate phase. The KVOPO4 based cathode delivered reversible multiple sodium (i.e. maximum 1.66 Na+ per formula unit) storage capability, which leads to a high specific capacity of 235 Ah kg−1. Combining an average voltage of 2.56 V vs. Na/Na+, a high practical energy density of over 600 Wh kg−1 was achieved, the highest yet reported for any sodium cathode material. The cathode exhibits a very small volume change upon cycling (1.4% for 0.64 sodium and 8.0% for 1.66 sodium ions). Density functional theory (DFT) calculations indicate that the KVOPO4 framework is a 3D ionic conductor with a reasonably, low Na+ migration energy barrier of ≈450 meV, in line with the good rate capability obtained.
KyVOPO4, is a new intercalation host for sodium batteries. The V3+ ↔ V4+ ↔ V5+ redox couple is for the first time fully activated by sodium ions in a vanadyl phosphate phase, delivering a high specific capacity of 235 Ah kg−1, and an energy density of over 600 Wh kg−1.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.201800221</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-5039-9334</orcidid><orcidid>https://orcid.org/0000000250399334</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1614-6832 |
ispartof | Advanced energy materials, 2018-07, Vol.8 (21), p.n/a |
issn | 1614-6832 1614-6840 |
language | eng |
recordid | cdi_osti_scitechconnect_1470548 |
source | Wiley |
subjects | Cathodes Conductors Density functional theory Electrode materials energy storage (including batteries and capacitors), defects, charge transport, materials and chemistry by design, synthesis (novel materials) Flux density high capacity high energy Lithium Lithium-ion batteries Migration multielectron Rechargeable batteries Sodium Sodium-ion batteries vanadyl phosphate |
title | KVOPO4: A New High Capacity Multielectron Na‐Ion Battery Cathode |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T15%3A59%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=KVOPO4:%20A%20New%20High%20Capacity%20Multielectron%20Na%E2%80%90Ion%20Battery%20Cathode&rft.jtitle=Advanced%20energy%20materials&rft.au=Ding,%20Jia&rft.aucorp=Energy%20Frontier%20Research%20Centers%20(EFRC)%20(United%20States).%20Northeastern%20Center%20for%20Chemical%20Energy%20Storage%20(NECCES)&rft.date=2018-07-25&rft.volume=8&rft.issue=21&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.201800221&rft_dat=%3Cproquest_osti_%3E2075520440%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-g4051-758d3da434b93cf59f89d4ca98cff07918ab9d2b6b0abde532dfa4d3f5fa210f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2075520440&rft_id=info:pmid/&rfr_iscdi=true |