Loading…

KVOPO4: A New High Capacity Multielectron Na‐Ion Battery Cathode

Sodium ion batteries have attracted much attention in recent years, due to the higher abundance and lower cost of sodium, as an alternative to lithium ion batteries. However, a major challenge is their lower energy density. In this work, we report a novel multi‐electron cathode material, KVOPO4, for...

Full description

Saved in:
Bibliographic Details
Published in:Advanced energy materials 2018-07, Vol.8 (21), p.n/a
Main Authors: Ding, Jia, Lin, Yuh‐Chieh, Liu, Jue, Rana, Jatinkumar, Zhang, Hanlei, Zhou, Hui, Chu, Iek‐Heng, Wiaderek, Kamila M., Omenya, Fredrick, Chernova, Natasha A., Chapman, Karena W., Piper, Louis F. J., Ong, Shyue Ping, Whittingham, M. Stanley
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page n/a
container_issue 21
container_start_page
container_title Advanced energy materials
container_volume 8
creator Ding, Jia
Lin, Yuh‐Chieh
Liu, Jue
Rana, Jatinkumar
Zhang, Hanlei
Zhou, Hui
Chu, Iek‐Heng
Wiaderek, Kamila M.
Omenya, Fredrick
Chernova, Natasha A.
Chapman, Karena W.
Piper, Louis F. J.
Ong, Shyue Ping
Whittingham, M. Stanley
description Sodium ion batteries have attracted much attention in recent years, due to the higher abundance and lower cost of sodium, as an alternative to lithium ion batteries. However, a major challenge is their lower energy density. In this work, we report a novel multi‐electron cathode material, KVOPO4, for sodium ion batteries. Due to the unique polyhedral framework, the V3+ ↔ V4+ ↔ V5+ redox couple was for the first time fully activated by sodium ions in a vanadyl phosphate phase. The KVOPO4 based cathode delivered reversible multiple sodium (i.e. maximum 1.66 Na+ per formula unit) storage capability, which leads to a high specific capacity of 235 Ah kg−1. Combining an average voltage of 2.56 V vs. Na/Na+, a high practical energy density of over 600 Wh kg−1 was achieved, the highest yet reported for any sodium cathode material. The cathode exhibits a very small volume change upon cycling (1.4% for 0.64 sodium and 8.0% for 1.66 sodium ions). Density functional theory (DFT) calculations indicate that the KVOPO4 framework is a 3D ionic conductor with a reasonably, low Na+ migration energy barrier of ≈450 meV, in line with the good rate capability obtained. KyVOPO4, is a new intercalation host for sodium batteries. The V3+ ↔ V4+ ↔ V5+ redox couple is for the first time fully activated by sodium ions in a vanadyl phosphate phase, delivering a high specific capacity of 235 Ah kg−1, and an energy density of over 600 Wh kg−1.
doi_str_mv 10.1002/aenm.201800221
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1470548</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2075520440</sourcerecordid><originalsourceid>FETCH-LOGICAL-g4051-758d3da434b93cf59f89d4ca98cff07918ab9d2b6b0abde532dfa4d3f5fa210f3</originalsourceid><addsrcrecordid>eNo9kEtPwkAUhSdGE4mydd3ounjnRTvugKAQebhQt5PpPKCktNgOId35E_yN_hKHYLibc07y5ebkIHSHoYcByKOy5bZHAKchEHyBOriPWdxPGVyePSXXqNs0GwjHBAZKO2j4-rl8W7KnaBAt7CGa5Kt1NFI7pXPfRvN94XNbWO3rqowW6vf7ZxrMUHlv6zZwfl0Ze4uunCoa2_3XG_TxPH4fTeLZ8mU6GsziFQOO44SnhhrFKMsE1Y4LlwrDtBKpdg4SgVOVCUOyfgYqM5ZTYpxihjruFMHg6A26P_2tGp_LJjS0eq2rsgz9JGYJcJYG6OEE7erqa28bLzfVvi5DL0kg4ZwAYxAocaIOeWFbuavzrapbiUEex5THMeV5TDkYL-bnRP8AiUppFw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2075520440</pqid></control><display><type>article</type><title>KVOPO4: A New High Capacity Multielectron Na‐Ion Battery Cathode</title><source>Wiley</source><creator>Ding, Jia ; Lin, Yuh‐Chieh ; Liu, Jue ; Rana, Jatinkumar ; Zhang, Hanlei ; Zhou, Hui ; Chu, Iek‐Heng ; Wiaderek, Kamila M. ; Omenya, Fredrick ; Chernova, Natasha A. ; Chapman, Karena W. ; Piper, Louis F. J. ; Ong, Shyue Ping ; Whittingham, M. Stanley</creator><creatorcontrib>Ding, Jia ; Lin, Yuh‐Chieh ; Liu, Jue ; Rana, Jatinkumar ; Zhang, Hanlei ; Zhou, Hui ; Chu, Iek‐Heng ; Wiaderek, Kamila M. ; Omenya, Fredrick ; Chernova, Natasha A. ; Chapman, Karena W. ; Piper, Louis F. J. ; Ong, Shyue Ping ; Whittingham, M. Stanley ; Energy Frontier Research Centers (EFRC) (United States). Northeastern Center for Chemical Energy Storage (NECCES)</creatorcontrib><description>Sodium ion batteries have attracted much attention in recent years, due to the higher abundance and lower cost of sodium, as an alternative to lithium ion batteries. However, a major challenge is their lower energy density. In this work, we report a novel multi‐electron cathode material, KVOPO4, for sodium ion batteries. Due to the unique polyhedral framework, the V3+ ↔ V4+ ↔ V5+ redox couple was for the first time fully activated by sodium ions in a vanadyl phosphate phase. The KVOPO4 based cathode delivered reversible multiple sodium (i.e. maximum 1.66 Na+ per formula unit) storage capability, which leads to a high specific capacity of 235 Ah kg−1. Combining an average voltage of 2.56 V vs. Na/Na+, a high practical energy density of over 600 Wh kg−1 was achieved, the highest yet reported for any sodium cathode material. The cathode exhibits a very small volume change upon cycling (1.4% for 0.64 sodium and 8.0% for 1.66 sodium ions). Density functional theory (DFT) calculations indicate that the KVOPO4 framework is a 3D ionic conductor with a reasonably, low Na+ migration energy barrier of ≈450 meV, in line with the good rate capability obtained. KyVOPO4, is a new intercalation host for sodium batteries. The V3+ ↔ V4+ ↔ V5+ redox couple is for the first time fully activated by sodium ions in a vanadyl phosphate phase, delivering a high specific capacity of 235 Ah kg−1, and an energy density of over 600 Wh kg−1.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.201800221</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Cathodes ; Conductors ; Density functional theory ; Electrode materials ; energy storage (including batteries and capacitors), defects, charge transport, materials and chemistry by design, synthesis (novel materials) ; Flux density ; high capacity ; high energy ; Lithium ; Lithium-ion batteries ; Migration ; multielectron ; Rechargeable batteries ; Sodium ; Sodium-ion batteries ; vanadyl phosphate</subject><ispartof>Advanced energy materials, 2018-07, Vol.8 (21), p.n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-5039-9334 ; 0000000250399334</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1470548$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ding, Jia</creatorcontrib><creatorcontrib>Lin, Yuh‐Chieh</creatorcontrib><creatorcontrib>Liu, Jue</creatorcontrib><creatorcontrib>Rana, Jatinkumar</creatorcontrib><creatorcontrib>Zhang, Hanlei</creatorcontrib><creatorcontrib>Zhou, Hui</creatorcontrib><creatorcontrib>Chu, Iek‐Heng</creatorcontrib><creatorcontrib>Wiaderek, Kamila M.</creatorcontrib><creatorcontrib>Omenya, Fredrick</creatorcontrib><creatorcontrib>Chernova, Natasha A.</creatorcontrib><creatorcontrib>Chapman, Karena W.</creatorcontrib><creatorcontrib>Piper, Louis F. J.</creatorcontrib><creatorcontrib>Ong, Shyue Ping</creatorcontrib><creatorcontrib>Whittingham, M. Stanley</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Northeastern Center for Chemical Energy Storage (NECCES)</creatorcontrib><title>KVOPO4: A New High Capacity Multielectron Na‐Ion Battery Cathode</title><title>Advanced energy materials</title><description>Sodium ion batteries have attracted much attention in recent years, due to the higher abundance and lower cost of sodium, as an alternative to lithium ion batteries. However, a major challenge is their lower energy density. In this work, we report a novel multi‐electron cathode material, KVOPO4, for sodium ion batteries. Due to the unique polyhedral framework, the V3+ ↔ V4+ ↔ V5+ redox couple was for the first time fully activated by sodium ions in a vanadyl phosphate phase. The KVOPO4 based cathode delivered reversible multiple sodium (i.e. maximum 1.66 Na+ per formula unit) storage capability, which leads to a high specific capacity of 235 Ah kg−1. Combining an average voltage of 2.56 V vs. Na/Na+, a high practical energy density of over 600 Wh kg−1 was achieved, the highest yet reported for any sodium cathode material. The cathode exhibits a very small volume change upon cycling (1.4% for 0.64 sodium and 8.0% for 1.66 sodium ions). Density functional theory (DFT) calculations indicate that the KVOPO4 framework is a 3D ionic conductor with a reasonably, low Na+ migration energy barrier of ≈450 meV, in line with the good rate capability obtained. KyVOPO4, is a new intercalation host for sodium batteries. The V3+ ↔ V4+ ↔ V5+ redox couple is for the first time fully activated by sodium ions in a vanadyl phosphate phase, delivering a high specific capacity of 235 Ah kg−1, and an energy density of over 600 Wh kg−1.</description><subject>Cathodes</subject><subject>Conductors</subject><subject>Density functional theory</subject><subject>Electrode materials</subject><subject>energy storage (including batteries and capacitors), defects, charge transport, materials and chemistry by design, synthesis (novel materials)</subject><subject>Flux density</subject><subject>high capacity</subject><subject>high energy</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Migration</subject><subject>multielectron</subject><subject>Rechargeable batteries</subject><subject>Sodium</subject><subject>Sodium-ion batteries</subject><subject>vanadyl phosphate</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kEtPwkAUhSdGE4mydd3ounjnRTvugKAQebhQt5PpPKCktNgOId35E_yN_hKHYLibc07y5ebkIHSHoYcByKOy5bZHAKchEHyBOriPWdxPGVyePSXXqNs0GwjHBAZKO2j4-rl8W7KnaBAt7CGa5Kt1NFI7pXPfRvN94XNbWO3rqowW6vf7ZxrMUHlv6zZwfl0Ze4uunCoa2_3XG_TxPH4fTeLZ8mU6GsziFQOO44SnhhrFKMsE1Y4LlwrDtBKpdg4SgVOVCUOyfgYqM5ZTYpxihjruFMHg6A26P_2tGp_LJjS0eq2rsgz9JGYJcJYG6OEE7erqa28bLzfVvi5DL0kg4ZwAYxAocaIOeWFbuavzrapbiUEex5THMeV5TDkYL-bnRP8AiUppFw</recordid><startdate>20180725</startdate><enddate>20180725</enddate><creator>Ding, Jia</creator><creator>Lin, Yuh‐Chieh</creator><creator>Liu, Jue</creator><creator>Rana, Jatinkumar</creator><creator>Zhang, Hanlei</creator><creator>Zhou, Hui</creator><creator>Chu, Iek‐Heng</creator><creator>Wiaderek, Kamila M.</creator><creator>Omenya, Fredrick</creator><creator>Chernova, Natasha A.</creator><creator>Chapman, Karena W.</creator><creator>Piper, Louis F. J.</creator><creator>Ong, Shyue Ping</creator><creator>Whittingham, M. Stanley</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-5039-9334</orcidid><orcidid>https://orcid.org/0000000250399334</orcidid></search><sort><creationdate>20180725</creationdate><title>KVOPO4: A New High Capacity Multielectron Na‐Ion Battery Cathode</title><author>Ding, Jia ; Lin, Yuh‐Chieh ; Liu, Jue ; Rana, Jatinkumar ; Zhang, Hanlei ; Zhou, Hui ; Chu, Iek‐Heng ; Wiaderek, Kamila M. ; Omenya, Fredrick ; Chernova, Natasha A. ; Chapman, Karena W. ; Piper, Louis F. J. ; Ong, Shyue Ping ; Whittingham, M. Stanley</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g4051-758d3da434b93cf59f89d4ca98cff07918ab9d2b6b0abde532dfa4d3f5fa210f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Cathodes</topic><topic>Conductors</topic><topic>Density functional theory</topic><topic>Electrode materials</topic><topic>energy storage (including batteries and capacitors), defects, charge transport, materials and chemistry by design, synthesis (novel materials)</topic><topic>Flux density</topic><topic>high capacity</topic><topic>high energy</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Migration</topic><topic>multielectron</topic><topic>Rechargeable batteries</topic><topic>Sodium</topic><topic>Sodium-ion batteries</topic><topic>vanadyl phosphate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, Jia</creatorcontrib><creatorcontrib>Lin, Yuh‐Chieh</creatorcontrib><creatorcontrib>Liu, Jue</creatorcontrib><creatorcontrib>Rana, Jatinkumar</creatorcontrib><creatorcontrib>Zhang, Hanlei</creatorcontrib><creatorcontrib>Zhou, Hui</creatorcontrib><creatorcontrib>Chu, Iek‐Heng</creatorcontrib><creatorcontrib>Wiaderek, Kamila M.</creatorcontrib><creatorcontrib>Omenya, Fredrick</creatorcontrib><creatorcontrib>Chernova, Natasha A.</creatorcontrib><creatorcontrib>Chapman, Karena W.</creatorcontrib><creatorcontrib>Piper, Louis F. J.</creatorcontrib><creatorcontrib>Ong, Shyue Ping</creatorcontrib><creatorcontrib>Whittingham, M. Stanley</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Northeastern Center for Chemical Energy Storage (NECCES)</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, Jia</au><au>Lin, Yuh‐Chieh</au><au>Liu, Jue</au><au>Rana, Jatinkumar</au><au>Zhang, Hanlei</au><au>Zhou, Hui</au><au>Chu, Iek‐Heng</au><au>Wiaderek, Kamila M.</au><au>Omenya, Fredrick</au><au>Chernova, Natasha A.</au><au>Chapman, Karena W.</au><au>Piper, Louis F. J.</au><au>Ong, Shyue Ping</au><au>Whittingham, M. Stanley</au><aucorp>Energy Frontier Research Centers (EFRC) (United States). Northeastern Center for Chemical Energy Storage (NECCES)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>KVOPO4: A New High Capacity Multielectron Na‐Ion Battery Cathode</atitle><jtitle>Advanced energy materials</jtitle><date>2018-07-25</date><risdate>2018</risdate><volume>8</volume><issue>21</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Sodium ion batteries have attracted much attention in recent years, due to the higher abundance and lower cost of sodium, as an alternative to lithium ion batteries. However, a major challenge is their lower energy density. In this work, we report a novel multi‐electron cathode material, KVOPO4, for sodium ion batteries. Due to the unique polyhedral framework, the V3+ ↔ V4+ ↔ V5+ redox couple was for the first time fully activated by sodium ions in a vanadyl phosphate phase. The KVOPO4 based cathode delivered reversible multiple sodium (i.e. maximum 1.66 Na+ per formula unit) storage capability, which leads to a high specific capacity of 235 Ah kg−1. Combining an average voltage of 2.56 V vs. Na/Na+, a high practical energy density of over 600 Wh kg−1 was achieved, the highest yet reported for any sodium cathode material. The cathode exhibits a very small volume change upon cycling (1.4% for 0.64 sodium and 8.0% for 1.66 sodium ions). Density functional theory (DFT) calculations indicate that the KVOPO4 framework is a 3D ionic conductor with a reasonably, low Na+ migration energy barrier of ≈450 meV, in line with the good rate capability obtained. KyVOPO4, is a new intercalation host for sodium batteries. The V3+ ↔ V4+ ↔ V5+ redox couple is for the first time fully activated by sodium ions in a vanadyl phosphate phase, delivering a high specific capacity of 235 Ah kg−1, and an energy density of over 600 Wh kg−1.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.201800221</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-5039-9334</orcidid><orcidid>https://orcid.org/0000000250399334</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2018-07, Vol.8 (21), p.n/a
issn 1614-6832
1614-6840
language eng
recordid cdi_osti_scitechconnect_1470548
source Wiley
subjects Cathodes
Conductors
Density functional theory
Electrode materials
energy storage (including batteries and capacitors), defects, charge transport, materials and chemistry by design, synthesis (novel materials)
Flux density
high capacity
high energy
Lithium
Lithium-ion batteries
Migration
multielectron
Rechargeable batteries
Sodium
Sodium-ion batteries
vanadyl phosphate
title KVOPO4: A New High Capacity Multielectron Na‐Ion Battery Cathode
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T15%3A59%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=KVOPO4:%20A%20New%20High%20Capacity%20Multielectron%20Na%E2%80%90Ion%20Battery%20Cathode&rft.jtitle=Advanced%20energy%20materials&rft.au=Ding,%20Jia&rft.aucorp=Energy%20Frontier%20Research%20Centers%20(EFRC)%20(United%20States).%20Northeastern%20Center%20for%20Chemical%20Energy%20Storage%20(NECCES)&rft.date=2018-07-25&rft.volume=8&rft.issue=21&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.201800221&rft_dat=%3Cproquest_osti_%3E2075520440%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-g4051-758d3da434b93cf59f89d4ca98cff07918ab9d2b6b0abde532dfa4d3f5fa210f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2075520440&rft_id=info:pmid/&rfr_iscdi=true