Loading…

Completing a Charge Transport Chain for Artificial Photosynthesis

A ruthenium polypyridyl chromophore with electronically isolated triarylamine substituents has been synthesized that models the role of tyrosine in the electron transport chain in photosystem II. When bound to the surface of a TiO2 electrode, electron injection from a Ru­(II) Metal-to-Ligand Charge...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Chemical Society 2018-08, Vol.140 (31), p.9823-9826
Main Authors: Eberhart, Michael S, Bowers, Leah M. Rader, Shan, Bing, Troian-Gautier, Ludovic, Brennaman, M. Kyle, Papanikolas, John M, Meyer, Thomas J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a492t-bcde8802817010c12f183bd4eed86eee7a2424cce61b8b7e0aea7d0b040687cd3
cites cdi_FETCH-LOGICAL-a492t-bcde8802817010c12f183bd4eed86eee7a2424cce61b8b7e0aea7d0b040687cd3
container_end_page 9826
container_issue 31
container_start_page 9823
container_title Journal of the American Chemical Society
container_volume 140
creator Eberhart, Michael S
Bowers, Leah M. Rader
Shan, Bing
Troian-Gautier, Ludovic
Brennaman, M. Kyle
Papanikolas, John M
Meyer, Thomas J
description A ruthenium polypyridyl chromophore with electronically isolated triarylamine substituents has been synthesized that models the role of tyrosine in the electron transport chain in photosystem II. When bound to the surface of a TiO2 electrode, electron injection from a Ru­(II) Metal-to-Ligand Charge Transfer (MLCT) excited state occurs from the complex to the electrode to give Ru­(III). Subsequent rapid electron transfer from the pendant triarylamine to Ru­(III) occurs with an observed rate constant of ∼1010 s–1, which is limited by the rate of electron injection into the semiconductor. Transfer of the oxidative equivalent away from the semiconductor surface results in dramatically reduced rates of back electron transfer, and a long-lived (τ = ∼165 μs) triarylamine radical cation that has been used to oxidize hydroquinone to quinone in solution.
doi_str_mv 10.1021/jacs.8b06740
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1470670</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2075543026</sourcerecordid><originalsourceid>FETCH-LOGICAL-a492t-bcde8802817010c12f183bd4eed86eee7a2424cce61b8b7e0aea7d0b040687cd3</originalsourceid><addsrcrecordid>eNptkD1PwzAQhi0EoqWwMaOIiYGUs-PEZqwivqRKMJTZcpxL6yqNi-0O_fckaoGF6XSn595Xegi5pjClwOjDWpswlRUUgsMJGdOcQZpTVpySMQCwVMgiG5GLENb9ypmk52SUAWQF5GJMZqXbbFuMtlsmOilX2i8xWXjdha3zcTjYLmmcT2Y-2sYaq9vkY-WiC_surjDYcEnOGt0GvDrOCfl8flqUr-n8_eWtnM1TzR9ZTCtTo5TQ9wugYChrqMyqmiPWskBEoRln3BgsaCUrgaBRixoq4FBIYepsQm4PuS5Eq4KxEc3KuK5DExXlohcAPXR3gLbefe0wRLWxwWDb6g7dLigGIs95Bqzo0fsDarwLwWOjtt5utN8rCmowqwaz6mi2x2-Oybtqg_Uv_KPyr3r4Wrud73ob_2d9A1GxgN8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2075543026</pqid></control><display><type>article</type><title>Completing a Charge Transport Chain for Artificial Photosynthesis</title><source>Access via American Chemical Society</source><creator>Eberhart, Michael S ; Bowers, Leah M. Rader ; Shan, Bing ; Troian-Gautier, Ludovic ; Brennaman, M. Kyle ; Papanikolas, John M ; Meyer, Thomas J</creator><creatorcontrib>Eberhart, Michael S ; Bowers, Leah M. Rader ; Shan, Bing ; Troian-Gautier, Ludovic ; Brennaman, M. Kyle ; Papanikolas, John M ; Meyer, Thomas J ; Energy Frontier Research Centers (EFRC) (United States). Center for Solar Fuels (UNC EFRC)</creatorcontrib><description>A ruthenium polypyridyl chromophore with electronically isolated triarylamine substituents has been synthesized that models the role of tyrosine in the electron transport chain in photosystem II. When bound to the surface of a TiO2 electrode, electron injection from a Ru­(II) Metal-to-Ligand Charge Transfer (MLCT) excited state occurs from the complex to the electrode to give Ru­(III). Subsequent rapid electron transfer from the pendant triarylamine to Ru­(III) occurs with an observed rate constant of ∼1010 s–1, which is limited by the rate of electron injection into the semiconductor. Transfer of the oxidative equivalent away from the semiconductor surface results in dramatically reduced rates of back electron transfer, and a long-lived (τ = ∼165 μs) triarylamine radical cation that has been used to oxidize hydroquinone to quinone in solution.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.8b06740</identifier><identifier>PMID: 30036057</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>catalysis (heterogeneous) ; catalysis (homogeneous) ; charge transport ; electrodes - solar ; hydrogen and fuel cells ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; materials and chemistry by design ; photosynthesis (natural and artificial) ; solar (fuels) ; solar (photovoltaic) ; synthesis (novel materials) ; synthesis (self-assembly)</subject><ispartof>Journal of the American Chemical Society, 2018-08, Vol.140 (31), p.9823-9826</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a492t-bcde8802817010c12f183bd4eed86eee7a2424cce61b8b7e0aea7d0b040687cd3</citedby><cites>FETCH-LOGICAL-a492t-bcde8802817010c12f183bd4eed86eee7a2424cce61b8b7e0aea7d0b040687cd3</cites><orcidid>0000-0002-0902-6990 ; 0000-0002-7006-2608 ; 0000-0002-6802-3095 ; 0000-0002-7690-1361 ; 0000-0003-2364-3044 ; 0000-0002-6261-5727 ; 0000000268023095 ; 0000000209026990 ; 0000000276901361 ; 0000000323643044 ; 0000000262615727 ; 0000000270062608</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30036057$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1470670$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Eberhart, Michael S</creatorcontrib><creatorcontrib>Bowers, Leah M. Rader</creatorcontrib><creatorcontrib>Shan, Bing</creatorcontrib><creatorcontrib>Troian-Gautier, Ludovic</creatorcontrib><creatorcontrib>Brennaman, M. Kyle</creatorcontrib><creatorcontrib>Papanikolas, John M</creatorcontrib><creatorcontrib>Meyer, Thomas J</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Center for Solar Fuels (UNC EFRC)</creatorcontrib><title>Completing a Charge Transport Chain for Artificial Photosynthesis</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>A ruthenium polypyridyl chromophore with electronically isolated triarylamine substituents has been synthesized that models the role of tyrosine in the electron transport chain in photosystem II. When bound to the surface of a TiO2 electrode, electron injection from a Ru­(II) Metal-to-Ligand Charge Transfer (MLCT) excited state occurs from the complex to the electrode to give Ru­(III). Subsequent rapid electron transfer from the pendant triarylamine to Ru­(III) occurs with an observed rate constant of ∼1010 s–1, which is limited by the rate of electron injection into the semiconductor. Transfer of the oxidative equivalent away from the semiconductor surface results in dramatically reduced rates of back electron transfer, and a long-lived (τ = ∼165 μs) triarylamine radical cation that has been used to oxidize hydroquinone to quinone in solution.</description><subject>catalysis (heterogeneous)</subject><subject>catalysis (homogeneous)</subject><subject>charge transport</subject><subject>electrodes - solar</subject><subject>hydrogen and fuel cells</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>materials and chemistry by design</subject><subject>photosynthesis (natural and artificial)</subject><subject>solar (fuels)</subject><subject>solar (photovoltaic)</subject><subject>synthesis (novel materials)</subject><subject>synthesis (self-assembly)</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNptkD1PwzAQhi0EoqWwMaOIiYGUs-PEZqwivqRKMJTZcpxL6yqNi-0O_fckaoGF6XSn595Xegi5pjClwOjDWpswlRUUgsMJGdOcQZpTVpySMQCwVMgiG5GLENb9ypmk52SUAWQF5GJMZqXbbFuMtlsmOilX2i8xWXjdha3zcTjYLmmcT2Y-2sYaq9vkY-WiC_surjDYcEnOGt0GvDrOCfl8flqUr-n8_eWtnM1TzR9ZTCtTo5TQ9wugYChrqMyqmiPWskBEoRln3BgsaCUrgaBRixoq4FBIYepsQm4PuS5Eq4KxEc3KuK5DExXlohcAPXR3gLbefe0wRLWxwWDb6g7dLigGIs95Bqzo0fsDarwLwWOjtt5utN8rCmowqwaz6mi2x2-Oybtqg_Uv_KPyr3r4Wrud73ob_2d9A1GxgN8</recordid><startdate>20180808</startdate><enddate>20180808</enddate><creator>Eberhart, Michael S</creator><creator>Bowers, Leah M. Rader</creator><creator>Shan, Bing</creator><creator>Troian-Gautier, Ludovic</creator><creator>Brennaman, M. Kyle</creator><creator>Papanikolas, John M</creator><creator>Meyer, Thomas J</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-0902-6990</orcidid><orcidid>https://orcid.org/0000-0002-7006-2608</orcidid><orcidid>https://orcid.org/0000-0002-6802-3095</orcidid><orcidid>https://orcid.org/0000-0002-7690-1361</orcidid><orcidid>https://orcid.org/0000-0003-2364-3044</orcidid><orcidid>https://orcid.org/0000-0002-6261-5727</orcidid><orcidid>https://orcid.org/0000000268023095</orcidid><orcidid>https://orcid.org/0000000209026990</orcidid><orcidid>https://orcid.org/0000000276901361</orcidid><orcidid>https://orcid.org/0000000323643044</orcidid><orcidid>https://orcid.org/0000000262615727</orcidid><orcidid>https://orcid.org/0000000270062608</orcidid></search><sort><creationdate>20180808</creationdate><title>Completing a Charge Transport Chain for Artificial Photosynthesis</title><author>Eberhart, Michael S ; Bowers, Leah M. Rader ; Shan, Bing ; Troian-Gautier, Ludovic ; Brennaman, M. Kyle ; Papanikolas, John M ; Meyer, Thomas J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a492t-bcde8802817010c12f183bd4eed86eee7a2424cce61b8b7e0aea7d0b040687cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>catalysis (heterogeneous)</topic><topic>catalysis (homogeneous)</topic><topic>charge transport</topic><topic>electrodes - solar</topic><topic>hydrogen and fuel cells</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>materials and chemistry by design</topic><topic>photosynthesis (natural and artificial)</topic><topic>solar (fuels)</topic><topic>solar (photovoltaic)</topic><topic>synthesis (novel materials)</topic><topic>synthesis (self-assembly)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eberhart, Michael S</creatorcontrib><creatorcontrib>Bowers, Leah M. Rader</creatorcontrib><creatorcontrib>Shan, Bing</creatorcontrib><creatorcontrib>Troian-Gautier, Ludovic</creatorcontrib><creatorcontrib>Brennaman, M. Kyle</creatorcontrib><creatorcontrib>Papanikolas, John M</creatorcontrib><creatorcontrib>Meyer, Thomas J</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Center for Solar Fuels (UNC EFRC)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eberhart, Michael S</au><au>Bowers, Leah M. Rader</au><au>Shan, Bing</au><au>Troian-Gautier, Ludovic</au><au>Brennaman, M. Kyle</au><au>Papanikolas, John M</au><au>Meyer, Thomas J</au><aucorp>Energy Frontier Research Centers (EFRC) (United States). Center for Solar Fuels (UNC EFRC)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Completing a Charge Transport Chain for Artificial Photosynthesis</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2018-08-08</date><risdate>2018</risdate><volume>140</volume><issue>31</issue><spage>9823</spage><epage>9826</epage><pages>9823-9826</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>A ruthenium polypyridyl chromophore with electronically isolated triarylamine substituents has been synthesized that models the role of tyrosine in the electron transport chain in photosystem II. When bound to the surface of a TiO2 electrode, electron injection from a Ru­(II) Metal-to-Ligand Charge Transfer (MLCT) excited state occurs from the complex to the electrode to give Ru­(III). Subsequent rapid electron transfer from the pendant triarylamine to Ru­(III) occurs with an observed rate constant of ∼1010 s–1, which is limited by the rate of electron injection into the semiconductor. Transfer of the oxidative equivalent away from the semiconductor surface results in dramatically reduced rates of back electron transfer, and a long-lived (τ = ∼165 μs) triarylamine radical cation that has been used to oxidize hydroquinone to quinone in solution.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30036057</pmid><doi>10.1021/jacs.8b06740</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-0902-6990</orcidid><orcidid>https://orcid.org/0000-0002-7006-2608</orcidid><orcidid>https://orcid.org/0000-0002-6802-3095</orcidid><orcidid>https://orcid.org/0000-0002-7690-1361</orcidid><orcidid>https://orcid.org/0000-0003-2364-3044</orcidid><orcidid>https://orcid.org/0000-0002-6261-5727</orcidid><orcidid>https://orcid.org/0000000268023095</orcidid><orcidid>https://orcid.org/0000000209026990</orcidid><orcidid>https://orcid.org/0000000276901361</orcidid><orcidid>https://orcid.org/0000000323643044</orcidid><orcidid>https://orcid.org/0000000262615727</orcidid><orcidid>https://orcid.org/0000000270062608</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2018-08, Vol.140 (31), p.9823-9826
issn 0002-7863
1520-5126
language eng
recordid cdi_osti_scitechconnect_1470670
source Access via American Chemical Society
subjects catalysis (heterogeneous)
catalysis (homogeneous)
charge transport
electrodes - solar
hydrogen and fuel cells
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
materials and chemistry by design
photosynthesis (natural and artificial)
solar (fuels)
solar (photovoltaic)
synthesis (novel materials)
synthesis (self-assembly)
title Completing a Charge Transport Chain for Artificial Photosynthesis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T00%3A57%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Completing%20a%20Charge%20Transport%20Chain%20for%20Artificial%20Photosynthesis&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Eberhart,%20Michael%20S&rft.aucorp=Energy%20Frontier%20Research%20Centers%20(EFRC)%20(United%20States).%20Center%20for%20Solar%20Fuels%20(UNC%20EFRC)&rft.date=2018-08-08&rft.volume=140&rft.issue=31&rft.spage=9823&rft.epage=9826&rft.pages=9823-9826&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.8b06740&rft_dat=%3Cproquest_osti_%3E2075543026%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a492t-bcde8802817010c12f183bd4eed86eee7a2424cce61b8b7e0aea7d0b040687cd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2075543026&rft_id=info:pmid/30036057&rfr_iscdi=true