Loading…
Completing a Charge Transport Chain for Artificial Photosynthesis
A ruthenium polypyridyl chromophore with electronically isolated triarylamine substituents has been synthesized that models the role of tyrosine in the electron transport chain in photosystem II. When bound to the surface of a TiO2 electrode, electron injection from a Ru(II) Metal-to-Ligand Charge...
Saved in:
Published in: | Journal of the American Chemical Society 2018-08, Vol.140 (31), p.9823-9826 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a492t-bcde8802817010c12f183bd4eed86eee7a2424cce61b8b7e0aea7d0b040687cd3 |
---|---|
cites | cdi_FETCH-LOGICAL-a492t-bcde8802817010c12f183bd4eed86eee7a2424cce61b8b7e0aea7d0b040687cd3 |
container_end_page | 9826 |
container_issue | 31 |
container_start_page | 9823 |
container_title | Journal of the American Chemical Society |
container_volume | 140 |
creator | Eberhart, Michael S Bowers, Leah M. Rader Shan, Bing Troian-Gautier, Ludovic Brennaman, M. Kyle Papanikolas, John M Meyer, Thomas J |
description | A ruthenium polypyridyl chromophore with electronically isolated triarylamine substituents has been synthesized that models the role of tyrosine in the electron transport chain in photosystem II. When bound to the surface of a TiO2 electrode, electron injection from a Ru(II) Metal-to-Ligand Charge Transfer (MLCT) excited state occurs from the complex to the electrode to give Ru(III). Subsequent rapid electron transfer from the pendant triarylamine to Ru(III) occurs with an observed rate constant of ∼1010 s–1, which is limited by the rate of electron injection into the semiconductor. Transfer of the oxidative equivalent away from the semiconductor surface results in dramatically reduced rates of back electron transfer, and a long-lived (τ = ∼165 μs) triarylamine radical cation that has been used to oxidize hydroquinone to quinone in solution. |
doi_str_mv | 10.1021/jacs.8b06740 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1470670</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2075543026</sourcerecordid><originalsourceid>FETCH-LOGICAL-a492t-bcde8802817010c12f183bd4eed86eee7a2424cce61b8b7e0aea7d0b040687cd3</originalsourceid><addsrcrecordid>eNptkD1PwzAQhi0EoqWwMaOIiYGUs-PEZqwivqRKMJTZcpxL6yqNi-0O_fckaoGF6XSn595Xegi5pjClwOjDWpswlRUUgsMJGdOcQZpTVpySMQCwVMgiG5GLENb9ypmk52SUAWQF5GJMZqXbbFuMtlsmOilX2i8xWXjdha3zcTjYLmmcT2Y-2sYaq9vkY-WiC_surjDYcEnOGt0GvDrOCfl8flqUr-n8_eWtnM1TzR9ZTCtTo5TQ9wugYChrqMyqmiPWskBEoRln3BgsaCUrgaBRixoq4FBIYepsQm4PuS5Eq4KxEc3KuK5DExXlohcAPXR3gLbefe0wRLWxwWDb6g7dLigGIs95Bqzo0fsDarwLwWOjtt5utN8rCmowqwaz6mi2x2-Oybtqg_Uv_KPyr3r4Wrud73ob_2d9A1GxgN8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2075543026</pqid></control><display><type>article</type><title>Completing a Charge Transport Chain for Artificial Photosynthesis</title><source>Access via American Chemical Society</source><creator>Eberhart, Michael S ; Bowers, Leah M. Rader ; Shan, Bing ; Troian-Gautier, Ludovic ; Brennaman, M. Kyle ; Papanikolas, John M ; Meyer, Thomas J</creator><creatorcontrib>Eberhart, Michael S ; Bowers, Leah M. Rader ; Shan, Bing ; Troian-Gautier, Ludovic ; Brennaman, M. Kyle ; Papanikolas, John M ; Meyer, Thomas J ; Energy Frontier Research Centers (EFRC) (United States). Center for Solar Fuels (UNC EFRC)</creatorcontrib><description>A ruthenium polypyridyl chromophore with electronically isolated triarylamine substituents has been synthesized that models the role of tyrosine in the electron transport chain in photosystem II. When bound to the surface of a TiO2 electrode, electron injection from a Ru(II) Metal-to-Ligand Charge Transfer (MLCT) excited state occurs from the complex to the electrode to give Ru(III). Subsequent rapid electron transfer from the pendant triarylamine to Ru(III) occurs with an observed rate constant of ∼1010 s–1, which is limited by the rate of electron injection into the semiconductor. Transfer of the oxidative equivalent away from the semiconductor surface results in dramatically reduced rates of back electron transfer, and a long-lived (τ = ∼165 μs) triarylamine radical cation that has been used to oxidize hydroquinone to quinone in solution.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.8b06740</identifier><identifier>PMID: 30036057</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>catalysis (heterogeneous) ; catalysis (homogeneous) ; charge transport ; electrodes - solar ; hydrogen and fuel cells ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; materials and chemistry by design ; photosynthesis (natural and artificial) ; solar (fuels) ; solar (photovoltaic) ; synthesis (novel materials) ; synthesis (self-assembly)</subject><ispartof>Journal of the American Chemical Society, 2018-08, Vol.140 (31), p.9823-9826</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a492t-bcde8802817010c12f183bd4eed86eee7a2424cce61b8b7e0aea7d0b040687cd3</citedby><cites>FETCH-LOGICAL-a492t-bcde8802817010c12f183bd4eed86eee7a2424cce61b8b7e0aea7d0b040687cd3</cites><orcidid>0000-0002-0902-6990 ; 0000-0002-7006-2608 ; 0000-0002-6802-3095 ; 0000-0002-7690-1361 ; 0000-0003-2364-3044 ; 0000-0002-6261-5727 ; 0000000268023095 ; 0000000209026990 ; 0000000276901361 ; 0000000323643044 ; 0000000262615727 ; 0000000270062608</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30036057$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1470670$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Eberhart, Michael S</creatorcontrib><creatorcontrib>Bowers, Leah M. Rader</creatorcontrib><creatorcontrib>Shan, Bing</creatorcontrib><creatorcontrib>Troian-Gautier, Ludovic</creatorcontrib><creatorcontrib>Brennaman, M. Kyle</creatorcontrib><creatorcontrib>Papanikolas, John M</creatorcontrib><creatorcontrib>Meyer, Thomas J</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Center for Solar Fuels (UNC EFRC)</creatorcontrib><title>Completing a Charge Transport Chain for Artificial Photosynthesis</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>A ruthenium polypyridyl chromophore with electronically isolated triarylamine substituents has been synthesized that models the role of tyrosine in the electron transport chain in photosystem II. When bound to the surface of a TiO2 electrode, electron injection from a Ru(II) Metal-to-Ligand Charge Transfer (MLCT) excited state occurs from the complex to the electrode to give Ru(III). Subsequent rapid electron transfer from the pendant triarylamine to Ru(III) occurs with an observed rate constant of ∼1010 s–1, which is limited by the rate of electron injection into the semiconductor. Transfer of the oxidative equivalent away from the semiconductor surface results in dramatically reduced rates of back electron transfer, and a long-lived (τ = ∼165 μs) triarylamine radical cation that has been used to oxidize hydroquinone to quinone in solution.</description><subject>catalysis (heterogeneous)</subject><subject>catalysis (homogeneous)</subject><subject>charge transport</subject><subject>electrodes - solar</subject><subject>hydrogen and fuel cells</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>materials and chemistry by design</subject><subject>photosynthesis (natural and artificial)</subject><subject>solar (fuels)</subject><subject>solar (photovoltaic)</subject><subject>synthesis (novel materials)</subject><subject>synthesis (self-assembly)</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNptkD1PwzAQhi0EoqWwMaOIiYGUs-PEZqwivqRKMJTZcpxL6yqNi-0O_fckaoGF6XSn595Xegi5pjClwOjDWpswlRUUgsMJGdOcQZpTVpySMQCwVMgiG5GLENb9ypmk52SUAWQF5GJMZqXbbFuMtlsmOilX2i8xWXjdha3zcTjYLmmcT2Y-2sYaq9vkY-WiC_surjDYcEnOGt0GvDrOCfl8flqUr-n8_eWtnM1TzR9ZTCtTo5TQ9wugYChrqMyqmiPWskBEoRln3BgsaCUrgaBRixoq4FBIYepsQm4PuS5Eq4KxEc3KuK5DExXlohcAPXR3gLbefe0wRLWxwWDb6g7dLigGIs95Bqzo0fsDarwLwWOjtt5utN8rCmowqwaz6mi2x2-Oybtqg_Uv_KPyr3r4Wrud73ob_2d9A1GxgN8</recordid><startdate>20180808</startdate><enddate>20180808</enddate><creator>Eberhart, Michael S</creator><creator>Bowers, Leah M. Rader</creator><creator>Shan, Bing</creator><creator>Troian-Gautier, Ludovic</creator><creator>Brennaman, M. Kyle</creator><creator>Papanikolas, John M</creator><creator>Meyer, Thomas J</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-0902-6990</orcidid><orcidid>https://orcid.org/0000-0002-7006-2608</orcidid><orcidid>https://orcid.org/0000-0002-6802-3095</orcidid><orcidid>https://orcid.org/0000-0002-7690-1361</orcidid><orcidid>https://orcid.org/0000-0003-2364-3044</orcidid><orcidid>https://orcid.org/0000-0002-6261-5727</orcidid><orcidid>https://orcid.org/0000000268023095</orcidid><orcidid>https://orcid.org/0000000209026990</orcidid><orcidid>https://orcid.org/0000000276901361</orcidid><orcidid>https://orcid.org/0000000323643044</orcidid><orcidid>https://orcid.org/0000000262615727</orcidid><orcidid>https://orcid.org/0000000270062608</orcidid></search><sort><creationdate>20180808</creationdate><title>Completing a Charge Transport Chain for Artificial Photosynthesis</title><author>Eberhart, Michael S ; Bowers, Leah M. Rader ; Shan, Bing ; Troian-Gautier, Ludovic ; Brennaman, M. Kyle ; Papanikolas, John M ; Meyer, Thomas J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a492t-bcde8802817010c12f183bd4eed86eee7a2424cce61b8b7e0aea7d0b040687cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>catalysis (heterogeneous)</topic><topic>catalysis (homogeneous)</topic><topic>charge transport</topic><topic>electrodes - solar</topic><topic>hydrogen and fuel cells</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>materials and chemistry by design</topic><topic>photosynthesis (natural and artificial)</topic><topic>solar (fuels)</topic><topic>solar (photovoltaic)</topic><topic>synthesis (novel materials)</topic><topic>synthesis (self-assembly)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eberhart, Michael S</creatorcontrib><creatorcontrib>Bowers, Leah M. Rader</creatorcontrib><creatorcontrib>Shan, Bing</creatorcontrib><creatorcontrib>Troian-Gautier, Ludovic</creatorcontrib><creatorcontrib>Brennaman, M. Kyle</creatorcontrib><creatorcontrib>Papanikolas, John M</creatorcontrib><creatorcontrib>Meyer, Thomas J</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Center for Solar Fuels (UNC EFRC)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eberhart, Michael S</au><au>Bowers, Leah M. Rader</au><au>Shan, Bing</au><au>Troian-Gautier, Ludovic</au><au>Brennaman, M. Kyle</au><au>Papanikolas, John M</au><au>Meyer, Thomas J</au><aucorp>Energy Frontier Research Centers (EFRC) (United States). Center for Solar Fuels (UNC EFRC)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Completing a Charge Transport Chain for Artificial Photosynthesis</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2018-08-08</date><risdate>2018</risdate><volume>140</volume><issue>31</issue><spage>9823</spage><epage>9826</epage><pages>9823-9826</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>A ruthenium polypyridyl chromophore with electronically isolated triarylamine substituents has been synthesized that models the role of tyrosine in the electron transport chain in photosystem II. When bound to the surface of a TiO2 electrode, electron injection from a Ru(II) Metal-to-Ligand Charge Transfer (MLCT) excited state occurs from the complex to the electrode to give Ru(III). Subsequent rapid electron transfer from the pendant triarylamine to Ru(III) occurs with an observed rate constant of ∼1010 s–1, which is limited by the rate of electron injection into the semiconductor. Transfer of the oxidative equivalent away from the semiconductor surface results in dramatically reduced rates of back electron transfer, and a long-lived (τ = ∼165 μs) triarylamine radical cation that has been used to oxidize hydroquinone to quinone in solution.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30036057</pmid><doi>10.1021/jacs.8b06740</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-0902-6990</orcidid><orcidid>https://orcid.org/0000-0002-7006-2608</orcidid><orcidid>https://orcid.org/0000-0002-6802-3095</orcidid><orcidid>https://orcid.org/0000-0002-7690-1361</orcidid><orcidid>https://orcid.org/0000-0003-2364-3044</orcidid><orcidid>https://orcid.org/0000-0002-6261-5727</orcidid><orcidid>https://orcid.org/0000000268023095</orcidid><orcidid>https://orcid.org/0000000209026990</orcidid><orcidid>https://orcid.org/0000000276901361</orcidid><orcidid>https://orcid.org/0000000323643044</orcidid><orcidid>https://orcid.org/0000000262615727</orcidid><orcidid>https://orcid.org/0000000270062608</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7863 |
ispartof | Journal of the American Chemical Society, 2018-08, Vol.140 (31), p.9823-9826 |
issn | 0002-7863 1520-5126 |
language | eng |
recordid | cdi_osti_scitechconnect_1470670 |
source | Access via American Chemical Society |
subjects | catalysis (heterogeneous) catalysis (homogeneous) charge transport electrodes - solar hydrogen and fuel cells INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY materials and chemistry by design photosynthesis (natural and artificial) solar (fuels) solar (photovoltaic) synthesis (novel materials) synthesis (self-assembly) |
title | Completing a Charge Transport Chain for Artificial Photosynthesis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T00%3A57%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Completing%20a%20Charge%20Transport%20Chain%20for%20Artificial%20Photosynthesis&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Eberhart,%20Michael%20S&rft.aucorp=Energy%20Frontier%20Research%20Centers%20(EFRC)%20(United%20States).%20Center%20for%20Solar%20Fuels%20(UNC%20EFRC)&rft.date=2018-08-08&rft.volume=140&rft.issue=31&rft.spage=9823&rft.epage=9826&rft.pages=9823-9826&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.8b06740&rft_dat=%3Cproquest_osti_%3E2075543026%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a492t-bcde8802817010c12f183bd4eed86eee7a2424cce61b8b7e0aea7d0b040687cd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2075543026&rft_id=info:pmid/30036057&rfr_iscdi=true |