Loading…

Laser Sintering of Printed Anodes for Al-Air Batteries

We report on a 3D printed Al anode for Al-air battery combined with laser sintering method. We verified that laser sintering contributed to effective removal of the organic solvent in the slurry and increased the conductivity of the printed anode. By application of infrared laser sintering, we signi...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the Electrochemical Society 2018-01, Vol.165 (3), p.A584-A592
Main Authors: Yu, Yongchao, Chen, Min, Wang, Shutong, Hill, Curtis, Joshi, Pooran, Kuruganti, Teja, Hu, Anming
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We report on a 3D printed Al anode for Al-air battery combined with laser sintering method. We verified that laser sintering contributed to effective removal of the organic solvent in the slurry and increased the conductivity of the printed anode. By application of infrared laser sintering, we significantly improved electrical contacts of Al nanoparticles and electrochemical performance of Al-air cells. A Pt/C coated hydrophobic carbon paper was used for air cathode to provide a good electrical contact, an oxygen flow ability, and the water sealing. Gel-style KOH was introduced as the electrolyte and waterways also utilized in the chemical reaction. The laser sintered Al-air battery could provide 239 mAh/g discharge capacity and a 0.95 V operation voltage. Also, a 3D structured anode was fabricated by 3D printing the active material on current collectors to achieve a high mass-loading with active material thickness of 360 μm, 560 μm and 680 μm for 1, 2 and 3 layers 3D printed electrodes. The battery cells provide areal discharge capacities of 1.5 mAh/cm2, 2.8mAh/cm2, and 3.23 mAh/cm2, respectively for 1, 2 and 3 layers-electrodes.
ISSN:0013-4651
1945-7111
DOI:10.1149/2.0811803jes