Loading…
Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling
Passive daytime radiative cooling (PDRC) involves spontaneously cooling a surface by reflecting sunlight and radiating heat to the cold outer space. Current PDRC designs are promising alternatives to electrical cooling but are either inefficient or have limited applicability. We present a simple, in...
Saved in:
Published in: | Science (American Association for the Advancement of Science) 2018-10, Vol.362 (6412), p.315-319 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c498t-2d09f25c11fd30a2e124d7d1d12fe0dcd3d8afaee2851217ed22b0020606d55a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c498t-2d09f25c11fd30a2e124d7d1d12fe0dcd3d8afaee2851217ed22b0020606d55a3 |
container_end_page | 319 |
container_issue | 6412 |
container_start_page | 315 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 362 |
creator | Mandal, Jyotirmoy Fu, Yanke Overvig, Adam C Jia, Mingxin Sun, Kerui Shi, Norman N Zhou, Hua Xiao, Xianghui Yu, Nanfang Yang, Yuan |
description | Passive daytime radiative cooling (PDRC) involves spontaneously cooling a surface by reflecting sunlight and radiating heat to the cold outer space. Current PDRC designs are promising alternatives to electrical cooling but are either inefficient or have limited applicability. We present a simple, inexpensive, and scalable phase inversion-based method for fabricating hierarchically porous poly(vinylidene fluoride-co-hexafluoropropene) [P(VdF-HFP)
] coatings with excellent PDRC capability. High, substrate-independent hemispherical solar reflectances (0.96 ± 0.03) and long-wave infrared emittances (0.97 ± 0.02) allow for subambient temperature drops of ~6°C and cooling powers of ~96 watts per square meter (W m
) under solar intensities of 890 and 750 W m
, respectively. The performance equals or surpasses those of state-of-the-art PDRC designs, and the technique offers a paint-like simplicity. |
doi_str_mv | 10.1126/science.aat9513 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1478138</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2122756213</sourcerecordid><originalsourceid>FETCH-LOGICAL-c498t-2d09f25c11fd30a2e124d7d1d12fe0dcd3d8afaee2851217ed22b0020606d55a3</originalsourceid><addsrcrecordid>eNpd0U1PGzEQBmALUUGgPfdWreiFy8LMOPt1rKK2VIrUCz1WlrHHxGh3HWwHKf8eo4QeerJkPzOj8SvEZ4QbRGpvk_E8G77ROg8NyhOxQBiaeiCQp2IBINu6h645FxcpPQGUt0GeiXMJ1FIraSH-3nmOOpqNN3oc99U2xLBL5Rj3E8fKBJ39_JgqF2K18Y-bQtg5_zY2V1udkn_hyup99hNXUVtffLkxIYyl7qP44PSY-NPxvBR_fny_X93V698_f62-rWuzHPpck4XBUWMQnZWgiZGWtrNokRyDNVbaXjvNTH2DhB1bogcAghZa2zRaXoqrQ9-QslflUzKbjQnzzCYrXHY9yr6g6wPaxvC845TV5JPhcdQzl50VIS7boSszCv36H30KuziXFYoi6pqWUBZ1e1AmhpQiO7WNftJxrxDUWzzqGI86xlMqvhz77h4mtv_8ex7yFSiDjkI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2122756213</pqid></control><display><type>article</type><title>Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Science Online_科学在线</source><source>Alma/SFX Local Collection</source><creator>Mandal, Jyotirmoy ; Fu, Yanke ; Overvig, Adam C ; Jia, Mingxin ; Sun, Kerui ; Shi, Norman N ; Zhou, Hua ; Xiao, Xianghui ; Yu, Nanfang ; Yang, Yuan</creator><creatorcontrib>Mandal, Jyotirmoy ; Fu, Yanke ; Overvig, Adam C ; Jia, Mingxin ; Sun, Kerui ; Shi, Norman N ; Zhou, Hua ; Xiao, Xianghui ; Yu, Nanfang ; Yang, Yuan ; Brookhaven National Lab. (BNL), Upton, NY (United States) ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>Passive daytime radiative cooling (PDRC) involves spontaneously cooling a surface by reflecting sunlight and radiating heat to the cold outer space. Current PDRC designs are promising alternatives to electrical cooling but are either inefficient or have limited applicability. We present a simple, inexpensive, and scalable phase inversion-based method for fabricating hierarchically porous poly(vinylidene fluoride-co-hexafluoropropene) [P(VdF-HFP)
] coatings with excellent PDRC capability. High, substrate-independent hemispherical solar reflectances (0.96 ± 0.03) and long-wave infrared emittances (0.97 ± 0.02) allow for subambient temperature drops of ~6°C and cooling powers of ~96 watts per square meter (W m
) under solar intensities of 890 and 750 W m
, respectively. The performance equals or surpasses those of state-of-the-art PDRC designs, and the technique offers a paint-like simplicity.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.aat9513</identifier><identifier>PMID: 30262632</identifier><language>eng</language><publisher>United States: The American Association for the Advancement of Science</publisher><subject>Air conditioners ; Air conditioning ; Climate Control ; Cooling ; Daytime ; Durability ; Fluorides ; MATERIALS SCIENCE ; Polymer coatings ; Protective coatings ; Roofs ; Substrates ; Temperature ; Vinylidene ; Vinylidene fluoride</subject><ispartof>Science (American Association for the Advancement of Science), 2018-10, Vol.362 (6412), p.315-319</ispartof><rights>Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.</rights><rights>Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c498t-2d09f25c11fd30a2e124d7d1d12fe0dcd3d8afaee2851217ed22b0020606d55a3</citedby><cites>FETCH-LOGICAL-c498t-2d09f25c11fd30a2e124d7d1d12fe0dcd3d8afaee2851217ed22b0020606d55a3</cites><orcidid>0000-0001-8124-5234 ; 0000-0002-4389-2921 ; 0000-0002-9462-4724 ; 0000-0003-0264-2640 ; 0000-0002-7912-4027 ; 0000-0002-1559-066X ; 000000021559066X ; 0000000302642640 ; 0000000279124027 ; 0000000294624724 ; 0000000181245234 ; 0000000243892921</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2884,2885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30262632$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1478138$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Mandal, Jyotirmoy</creatorcontrib><creatorcontrib>Fu, Yanke</creatorcontrib><creatorcontrib>Overvig, Adam C</creatorcontrib><creatorcontrib>Jia, Mingxin</creatorcontrib><creatorcontrib>Sun, Kerui</creatorcontrib><creatorcontrib>Shi, Norman N</creatorcontrib><creatorcontrib>Zhou, Hua</creatorcontrib><creatorcontrib>Xiao, Xianghui</creatorcontrib><creatorcontrib>Yu, Nanfang</creatorcontrib><creatorcontrib>Yang, Yuan</creatorcontrib><creatorcontrib>Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Passive daytime radiative cooling (PDRC) involves spontaneously cooling a surface by reflecting sunlight and radiating heat to the cold outer space. Current PDRC designs are promising alternatives to electrical cooling but are either inefficient or have limited applicability. We present a simple, inexpensive, and scalable phase inversion-based method for fabricating hierarchically porous poly(vinylidene fluoride-co-hexafluoropropene) [P(VdF-HFP)
] coatings with excellent PDRC capability. High, substrate-independent hemispherical solar reflectances (0.96 ± 0.03) and long-wave infrared emittances (0.97 ± 0.02) allow for subambient temperature drops of ~6°C and cooling powers of ~96 watts per square meter (W m
) under solar intensities of 890 and 750 W m
, respectively. The performance equals or surpasses those of state-of-the-art PDRC designs, and the technique offers a paint-like simplicity.</description><subject>Air conditioners</subject><subject>Air conditioning</subject><subject>Climate Control</subject><subject>Cooling</subject><subject>Daytime</subject><subject>Durability</subject><subject>Fluorides</subject><subject>MATERIALS SCIENCE</subject><subject>Polymer coatings</subject><subject>Protective coatings</subject><subject>Roofs</subject><subject>Substrates</subject><subject>Temperature</subject><subject>Vinylidene</subject><subject>Vinylidene fluoride</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpd0U1PGzEQBmALUUGgPfdWreiFy8LMOPt1rKK2VIrUCz1WlrHHxGh3HWwHKf8eo4QeerJkPzOj8SvEZ4QbRGpvk_E8G77ROg8NyhOxQBiaeiCQp2IBINu6h645FxcpPQGUt0GeiXMJ1FIraSH-3nmOOpqNN3oc99U2xLBL5Rj3E8fKBJ39_JgqF2K18Y-bQtg5_zY2V1udkn_hyup99hNXUVtffLkxIYyl7qP44PSY-NPxvBR_fny_X93V698_f62-rWuzHPpck4XBUWMQnZWgiZGWtrNokRyDNVbaXjvNTH2DhB1bogcAghZa2zRaXoqrQ9-QslflUzKbjQnzzCYrXHY9yr6g6wPaxvC845TV5JPhcdQzl50VIS7boSszCv36H30KuziXFYoi6pqWUBZ1e1AmhpQiO7WNftJxrxDUWzzqGI86xlMqvhz77h4mtv_8ex7yFSiDjkI</recordid><startdate>20181019</startdate><enddate>20181019</enddate><creator>Mandal, Jyotirmoy</creator><creator>Fu, Yanke</creator><creator>Overvig, Adam C</creator><creator>Jia, Mingxin</creator><creator>Sun, Kerui</creator><creator>Shi, Norman N</creator><creator>Zhou, Hua</creator><creator>Xiao, Xianghui</creator><creator>Yu, Nanfang</creator><creator>Yang, Yuan</creator><general>The American Association for the Advancement of Science</general><general>AAAS</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-8124-5234</orcidid><orcidid>https://orcid.org/0000-0002-4389-2921</orcidid><orcidid>https://orcid.org/0000-0002-9462-4724</orcidid><orcidid>https://orcid.org/0000-0003-0264-2640</orcidid><orcidid>https://orcid.org/0000-0002-7912-4027</orcidid><orcidid>https://orcid.org/0000-0002-1559-066X</orcidid><orcidid>https://orcid.org/000000021559066X</orcidid><orcidid>https://orcid.org/0000000302642640</orcidid><orcidid>https://orcid.org/0000000279124027</orcidid><orcidid>https://orcid.org/0000000294624724</orcidid><orcidid>https://orcid.org/0000000181245234</orcidid><orcidid>https://orcid.org/0000000243892921</orcidid></search><sort><creationdate>20181019</creationdate><title>Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling</title><author>Mandal, Jyotirmoy ; Fu, Yanke ; Overvig, Adam C ; Jia, Mingxin ; Sun, Kerui ; Shi, Norman N ; Zhou, Hua ; Xiao, Xianghui ; Yu, Nanfang ; Yang, Yuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c498t-2d09f25c11fd30a2e124d7d1d12fe0dcd3d8afaee2851217ed22b0020606d55a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Air conditioners</topic><topic>Air conditioning</topic><topic>Climate Control</topic><topic>Cooling</topic><topic>Daytime</topic><topic>Durability</topic><topic>Fluorides</topic><topic>MATERIALS SCIENCE</topic><topic>Polymer coatings</topic><topic>Protective coatings</topic><topic>Roofs</topic><topic>Substrates</topic><topic>Temperature</topic><topic>Vinylidene</topic><topic>Vinylidene fluoride</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mandal, Jyotirmoy</creatorcontrib><creatorcontrib>Fu, Yanke</creatorcontrib><creatorcontrib>Overvig, Adam C</creatorcontrib><creatorcontrib>Jia, Mingxin</creatorcontrib><creatorcontrib>Sun, Kerui</creatorcontrib><creatorcontrib>Shi, Norman N</creatorcontrib><creatorcontrib>Zhou, Hua</creatorcontrib><creatorcontrib>Xiao, Xianghui</creatorcontrib><creatorcontrib>Yu, Nanfang</creatorcontrib><creatorcontrib>Yang, Yuan</creatorcontrib><creatorcontrib>Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mandal, Jyotirmoy</au><au>Fu, Yanke</au><au>Overvig, Adam C</au><au>Jia, Mingxin</au><au>Sun, Kerui</au><au>Shi, Norman N</au><au>Zhou, Hua</au><au>Xiao, Xianghui</au><au>Yu, Nanfang</au><au>Yang, Yuan</au><aucorp>Brookhaven National Lab. (BNL), Upton, NY (United States)</aucorp><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2018-10-19</date><risdate>2018</risdate><volume>362</volume><issue>6412</issue><spage>315</spage><epage>319</epage><pages>315-319</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>Passive daytime radiative cooling (PDRC) involves spontaneously cooling a surface by reflecting sunlight and radiating heat to the cold outer space. Current PDRC designs are promising alternatives to electrical cooling but are either inefficient or have limited applicability. We present a simple, inexpensive, and scalable phase inversion-based method for fabricating hierarchically porous poly(vinylidene fluoride-co-hexafluoropropene) [P(VdF-HFP)
] coatings with excellent PDRC capability. High, substrate-independent hemispherical solar reflectances (0.96 ± 0.03) and long-wave infrared emittances (0.97 ± 0.02) allow for subambient temperature drops of ~6°C and cooling powers of ~96 watts per square meter (W m
) under solar intensities of 890 and 750 W m
, respectively. The performance equals or surpasses those of state-of-the-art PDRC designs, and the technique offers a paint-like simplicity.</abstract><cop>United States</cop><pub>The American Association for the Advancement of Science</pub><pmid>30262632</pmid><doi>10.1126/science.aat9513</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-8124-5234</orcidid><orcidid>https://orcid.org/0000-0002-4389-2921</orcidid><orcidid>https://orcid.org/0000-0002-9462-4724</orcidid><orcidid>https://orcid.org/0000-0003-0264-2640</orcidid><orcidid>https://orcid.org/0000-0002-7912-4027</orcidid><orcidid>https://orcid.org/0000-0002-1559-066X</orcidid><orcidid>https://orcid.org/000000021559066X</orcidid><orcidid>https://orcid.org/0000000302642640</orcidid><orcidid>https://orcid.org/0000000279124027</orcidid><orcidid>https://orcid.org/0000000294624724</orcidid><orcidid>https://orcid.org/0000000181245234</orcidid><orcidid>https://orcid.org/0000000243892921</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2018-10, Vol.362 (6412), p.315-319 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_osti_scitechconnect_1478138 |
source | JSTOR Archival Journals and Primary Sources Collection; Science Online_科学在线; Alma/SFX Local Collection |
subjects | Air conditioners Air conditioning Climate Control Cooling Daytime Durability Fluorides MATERIALS SCIENCE Polymer coatings Protective coatings Roofs Substrates Temperature Vinylidene Vinylidene fluoride |
title | Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T09%3A01%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hierarchically%20porous%20polymer%20coatings%20for%20highly%20efficient%20passive%20daytime%20radiative%20cooling&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Mandal,%20Jyotirmoy&rft.aucorp=Brookhaven%20National%20Lab.%20(BNL),%20Upton,%20NY%20(United%20States)&rft.date=2018-10-19&rft.volume=362&rft.issue=6412&rft.spage=315&rft.epage=319&rft.pages=315-319&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.aat9513&rft_dat=%3Cproquest_osti_%3E2122756213%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c498t-2d09f25c11fd30a2e124d7d1d12fe0dcd3d8afaee2851217ed22b0020606d55a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2122756213&rft_id=info:pmid/30262632&rfr_iscdi=true |