Loading…
Fermi Surface Nesting and Phonon Frequency Gap Drive Anomalous Thermal Transport
The lattice thermal conductivity, k_{L}, of typical metallic and nonmetallic crystals decreases rapidly with increasing temperature because phonons interact more strongly with other phonons than they do with electrons. Using first principles calculations, we show that k_{L} can become nearly indepen...
Saved in:
Published in: | Physical review letters 2018-10, Vol.121 (17), p.175901-175901, Article 175901 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c480t-df01553232c97158e2a0e437f1aa9b5eeefbd4a9d2187269bfaf5f43d01c39623 |
---|---|
cites | cdi_FETCH-LOGICAL-c480t-df01553232c97158e2a0e437f1aa9b5eeefbd4a9d2187269bfaf5f43d01c39623 |
container_end_page | 175901 |
container_issue | 17 |
container_start_page | 175901 |
container_title | Physical review letters |
container_volume | 121 |
creator | Li, Chunhua Ravichandran, Navaneetha K Lindsay, Lucas Broido, David |
description | The lattice thermal conductivity, k_{L}, of typical metallic and nonmetallic crystals decreases rapidly with increasing temperature because phonons interact more strongly with other phonons than they do with electrons. Using first principles calculations, we show that k_{L} can become nearly independent of temperature in metals that have nested Fermi surfaces and large frequency gaps between acoustic and optic phonons. Then, the interactions between phonons and electrons become much stronger than the mutual interactions between phonons, giving the fundamentally different k_{L} behavior. This striking trend is revealed here in the group V transition metal carbides, vanadium carbide, niobium carbide, and tantalum carbide, and it should also occur in several other metal compounds. This work gives insights into the physics of heat conduction in solids and identifies a new heat flow regime driven by the interplay between Fermi surfaces and phonon dispersions. |
doi_str_mv | 10.1103/physrevlett.121.175901 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1479763</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2131203965</sourcerecordid><originalsourceid>FETCH-LOGICAL-c480t-df01553232c97158e2a0e437f1aa9b5eeefbd4a9d2187269bfaf5f43d01c39623</originalsourceid><addsrcrecordid>eNpdkcGO0zAQhi0EYsvCK6wsuHBJmbGTOD6uFrogVVBBOVuuM6FZJXawk0p9e7zqwoHTXL7_nxl9jN0grBFBfpiO5xTpNNA8r1HgGlWlAZ-xFYLShUIsn7MVgMRCA6gr9iqlBwBAUTcv2ZWEElFLWLHdhuLY8x9L7Kwj_pXS3Ptf3PqW747BB883kX4v5N2Z39uJf4z9ifitD6MdwpL4_pjzduD7aH2aQpxfsxedHRK9eZrX7Ofm0_7uc7H9dv_l7nZbuLKBuWg7wKqSQgqnFVYNCQtUStWhtfpQEVF3aEurW4GNErU-dLarulK2gE7qWshr9vbSG_LFJrl-Jnd0wXtys8FSaVXLDL2_QFMM-Yk0m7FPjobBesrXG4FSCNGAwoy--w99CEv0-YVHCgXkrVWm6gvlYkhZQGem2I82ng2CeRRjdlnMdzptsxiTxZiLmBy8eapfDiO1_2J_Tcg_mhyLNg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2131203965</pqid></control><display><type>article</type><title>Fermi Surface Nesting and Phonon Frequency Gap Drive Anomalous Thermal Transport</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Li, Chunhua ; Ravichandran, Navaneetha K ; Lindsay, Lucas ; Broido, David</creator><creatorcontrib>Li, Chunhua ; Ravichandran, Navaneetha K ; Lindsay, Lucas ; Broido, David ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>The lattice thermal conductivity, k_{L}, of typical metallic and nonmetallic crystals decreases rapidly with increasing temperature because phonons interact more strongly with other phonons than they do with electrons. Using first principles calculations, we show that k_{L} can become nearly independent of temperature in metals that have nested Fermi surfaces and large frequency gaps between acoustic and optic phonons. Then, the interactions between phonons and electrons become much stronger than the mutual interactions between phonons, giving the fundamentally different k_{L} behavior. This striking trend is revealed here in the group V transition metal carbides, vanadium carbide, niobium carbide, and tantalum carbide, and it should also occur in several other metal compounds. This work gives insights into the physics of heat conduction in solids and identifies a new heat flow regime driven by the interplay between Fermi surfaces and phonon dispersions.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/physrevlett.121.175901</identifier><identifier>PMID: 30411930</identifier><language>eng</language><publisher>United States: American Physical Society</publisher><subject>Conduction heating ; Conductive heat transfer ; Crystal lattices ; Electrons ; Fermi surfaces ; First principles ; Heat transmission ; MATERIALS SCIENCE ; Metal carbides ; Metal compounds ; Nesting ; Niobium carbide ; Phonons ; Tantalum ; Tantalum carbide ; Thermal conductivity ; Transition metals ; Vanadium carbide</subject><ispartof>Physical review letters, 2018-10, Vol.121 (17), p.175901-175901, Article 175901</ispartof><rights>Copyright American Physical Society Oct 26, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c480t-df01553232c97158e2a0e437f1aa9b5eeefbd4a9d2187269bfaf5f43d01c39623</citedby><cites>FETCH-LOGICAL-c480t-df01553232c97158e2a0e437f1aa9b5eeefbd4a9d2187269bfaf5f43d01c39623</cites><orcidid>0000000196457993</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,781,785,886,27926,27927</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30411930$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1479763$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Chunhua</creatorcontrib><creatorcontrib>Ravichandran, Navaneetha K</creatorcontrib><creatorcontrib>Lindsay, Lucas</creatorcontrib><creatorcontrib>Broido, David</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Fermi Surface Nesting and Phonon Frequency Gap Drive Anomalous Thermal Transport</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>The lattice thermal conductivity, k_{L}, of typical metallic and nonmetallic crystals decreases rapidly with increasing temperature because phonons interact more strongly with other phonons than they do with electrons. Using first principles calculations, we show that k_{L} can become nearly independent of temperature in metals that have nested Fermi surfaces and large frequency gaps between acoustic and optic phonons. Then, the interactions between phonons and electrons become much stronger than the mutual interactions between phonons, giving the fundamentally different k_{L} behavior. This striking trend is revealed here in the group V transition metal carbides, vanadium carbide, niobium carbide, and tantalum carbide, and it should also occur in several other metal compounds. This work gives insights into the physics of heat conduction in solids and identifies a new heat flow regime driven by the interplay between Fermi surfaces and phonon dispersions.</description><subject>Conduction heating</subject><subject>Conductive heat transfer</subject><subject>Crystal lattices</subject><subject>Electrons</subject><subject>Fermi surfaces</subject><subject>First principles</subject><subject>Heat transmission</subject><subject>MATERIALS SCIENCE</subject><subject>Metal carbides</subject><subject>Metal compounds</subject><subject>Nesting</subject><subject>Niobium carbide</subject><subject>Phonons</subject><subject>Tantalum</subject><subject>Tantalum carbide</subject><subject>Thermal conductivity</subject><subject>Transition metals</subject><subject>Vanadium carbide</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkcGO0zAQhi0EYsvCK6wsuHBJmbGTOD6uFrogVVBBOVuuM6FZJXawk0p9e7zqwoHTXL7_nxl9jN0grBFBfpiO5xTpNNA8r1HgGlWlAZ-xFYLShUIsn7MVgMRCA6gr9iqlBwBAUTcv2ZWEElFLWLHdhuLY8x9L7Kwj_pXS3Ptf3PqW747BB883kX4v5N2Z39uJf4z9ifitD6MdwpL4_pjzduD7aH2aQpxfsxedHRK9eZrX7Ofm0_7uc7H9dv_l7nZbuLKBuWg7wKqSQgqnFVYNCQtUStWhtfpQEVF3aEurW4GNErU-dLarulK2gE7qWshr9vbSG_LFJrl-Jnd0wXtys8FSaVXLDL2_QFMM-Yk0m7FPjobBesrXG4FSCNGAwoy--w99CEv0-YVHCgXkrVWm6gvlYkhZQGem2I82ng2CeRRjdlnMdzptsxiTxZiLmBy8eapfDiO1_2J_Tcg_mhyLNg</recordid><startdate>20181022</startdate><enddate>20181022</enddate><creator>Li, Chunhua</creator><creator>Ravichandran, Navaneetha K</creator><creator>Lindsay, Lucas</creator><creator>Broido, David</creator><general>American Physical Society</general><general>American Physical Society (APS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000196457993</orcidid></search><sort><creationdate>20181022</creationdate><title>Fermi Surface Nesting and Phonon Frequency Gap Drive Anomalous Thermal Transport</title><author>Li, Chunhua ; Ravichandran, Navaneetha K ; Lindsay, Lucas ; Broido, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c480t-df01553232c97158e2a0e437f1aa9b5eeefbd4a9d2187269bfaf5f43d01c39623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Conduction heating</topic><topic>Conductive heat transfer</topic><topic>Crystal lattices</topic><topic>Electrons</topic><topic>Fermi surfaces</topic><topic>First principles</topic><topic>Heat transmission</topic><topic>MATERIALS SCIENCE</topic><topic>Metal carbides</topic><topic>Metal compounds</topic><topic>Nesting</topic><topic>Niobium carbide</topic><topic>Phonons</topic><topic>Tantalum</topic><topic>Tantalum carbide</topic><topic>Thermal conductivity</topic><topic>Transition metals</topic><topic>Vanadium carbide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Chunhua</creatorcontrib><creatorcontrib>Ravichandran, Navaneetha K</creatorcontrib><creatorcontrib>Lindsay, Lucas</creatorcontrib><creatorcontrib>Broido, David</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Chunhua</au><au>Ravichandran, Navaneetha K</au><au>Lindsay, Lucas</au><au>Broido, David</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fermi Surface Nesting and Phonon Frequency Gap Drive Anomalous Thermal Transport</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2018-10-22</date><risdate>2018</risdate><volume>121</volume><issue>17</issue><spage>175901</spage><epage>175901</epage><pages>175901-175901</pages><artnum>175901</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>The lattice thermal conductivity, k_{L}, of typical metallic and nonmetallic crystals decreases rapidly with increasing temperature because phonons interact more strongly with other phonons than they do with electrons. Using first principles calculations, we show that k_{L} can become nearly independent of temperature in metals that have nested Fermi surfaces and large frequency gaps between acoustic and optic phonons. Then, the interactions between phonons and electrons become much stronger than the mutual interactions between phonons, giving the fundamentally different k_{L} behavior. This striking trend is revealed here in the group V transition metal carbides, vanadium carbide, niobium carbide, and tantalum carbide, and it should also occur in several other metal compounds. This work gives insights into the physics of heat conduction in solids and identifies a new heat flow regime driven by the interplay between Fermi surfaces and phonon dispersions.</abstract><cop>United States</cop><pub>American Physical Society</pub><pmid>30411930</pmid><doi>10.1103/physrevlett.121.175901</doi><tpages>1</tpages><orcidid>https://orcid.org/0000000196457993</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Physical review letters, 2018-10, Vol.121 (17), p.175901-175901, Article 175901 |
issn | 0031-9007 1079-7114 |
language | eng |
recordid | cdi_osti_scitechconnect_1479763 |
source | American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list) |
subjects | Conduction heating Conductive heat transfer Crystal lattices Electrons Fermi surfaces First principles Heat transmission MATERIALS SCIENCE Metal carbides Metal compounds Nesting Niobium carbide Phonons Tantalum Tantalum carbide Thermal conductivity Transition metals Vanadium carbide |
title | Fermi Surface Nesting and Phonon Frequency Gap Drive Anomalous Thermal Transport |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T09%3A47%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fermi%20Surface%20Nesting%20and%20Phonon%20Frequency%20Gap%20Drive%20Anomalous%20Thermal%20Transport&rft.jtitle=Physical%20review%20letters&rft.au=Li,%20Chunhua&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2018-10-22&rft.volume=121&rft.issue=17&rft.spage=175901&rft.epage=175901&rft.pages=175901-175901&rft.artnum=175901&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/physrevlett.121.175901&rft_dat=%3Cproquest_osti_%3E2131203965%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c480t-df01553232c97158e2a0e437f1aa9b5eeefbd4a9d2187269bfaf5f43d01c39623%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2131203965&rft_id=info:pmid/30411930&rfr_iscdi=true |