Loading…

Fermi Surface Nesting and Phonon Frequency Gap Drive Anomalous Thermal Transport

The lattice thermal conductivity, k_{L}, of typical metallic and nonmetallic crystals decreases rapidly with increasing temperature because phonons interact more strongly with other phonons than they do with electrons. Using first principles calculations, we show that k_{L} can become nearly indepen...

Full description

Saved in:
Bibliographic Details
Published in:Physical review letters 2018-10, Vol.121 (17), p.175901-175901, Article 175901
Main Authors: Li, Chunhua, Ravichandran, Navaneetha K, Lindsay, Lucas, Broido, David
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c480t-df01553232c97158e2a0e437f1aa9b5eeefbd4a9d2187269bfaf5f43d01c39623
cites cdi_FETCH-LOGICAL-c480t-df01553232c97158e2a0e437f1aa9b5eeefbd4a9d2187269bfaf5f43d01c39623
container_end_page 175901
container_issue 17
container_start_page 175901
container_title Physical review letters
container_volume 121
creator Li, Chunhua
Ravichandran, Navaneetha K
Lindsay, Lucas
Broido, David
description The lattice thermal conductivity, k_{L}, of typical metallic and nonmetallic crystals decreases rapidly with increasing temperature because phonons interact more strongly with other phonons than they do with electrons. Using first principles calculations, we show that k_{L} can become nearly independent of temperature in metals that have nested Fermi surfaces and large frequency gaps between acoustic and optic phonons. Then, the interactions between phonons and electrons become much stronger than the mutual interactions between phonons, giving the fundamentally different k_{L} behavior. This striking trend is revealed here in the group V transition metal carbides, vanadium carbide, niobium carbide, and tantalum carbide, and it should also occur in several other metal compounds. This work gives insights into the physics of heat conduction in solids and identifies a new heat flow regime driven by the interplay between Fermi surfaces and phonon dispersions.
doi_str_mv 10.1103/physrevlett.121.175901
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1479763</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2131203965</sourcerecordid><originalsourceid>FETCH-LOGICAL-c480t-df01553232c97158e2a0e437f1aa9b5eeefbd4a9d2187269bfaf5f43d01c39623</originalsourceid><addsrcrecordid>eNpdkcGO0zAQhi0EYsvCK6wsuHBJmbGTOD6uFrogVVBBOVuuM6FZJXawk0p9e7zqwoHTXL7_nxl9jN0grBFBfpiO5xTpNNA8r1HgGlWlAZ-xFYLShUIsn7MVgMRCA6gr9iqlBwBAUTcv2ZWEElFLWLHdhuLY8x9L7Kwj_pXS3Ptf3PqW747BB883kX4v5N2Z39uJf4z9ifitD6MdwpL4_pjzduD7aH2aQpxfsxedHRK9eZrX7Ofm0_7uc7H9dv_l7nZbuLKBuWg7wKqSQgqnFVYNCQtUStWhtfpQEVF3aEurW4GNErU-dLarulK2gE7qWshr9vbSG_LFJrl-Jnd0wXtys8FSaVXLDL2_QFMM-Yk0m7FPjobBesrXG4FSCNGAwoy--w99CEv0-YVHCgXkrVWm6gvlYkhZQGem2I82ng2CeRRjdlnMdzptsxiTxZiLmBy8eapfDiO1_2J_Tcg_mhyLNg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2131203965</pqid></control><display><type>article</type><title>Fermi Surface Nesting and Phonon Frequency Gap Drive Anomalous Thermal Transport</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Li, Chunhua ; Ravichandran, Navaneetha K ; Lindsay, Lucas ; Broido, David</creator><creatorcontrib>Li, Chunhua ; Ravichandran, Navaneetha K ; Lindsay, Lucas ; Broido, David ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>The lattice thermal conductivity, k_{L}, of typical metallic and nonmetallic crystals decreases rapidly with increasing temperature because phonons interact more strongly with other phonons than they do with electrons. Using first principles calculations, we show that k_{L} can become nearly independent of temperature in metals that have nested Fermi surfaces and large frequency gaps between acoustic and optic phonons. Then, the interactions between phonons and electrons become much stronger than the mutual interactions between phonons, giving the fundamentally different k_{L} behavior. This striking trend is revealed here in the group V transition metal carbides, vanadium carbide, niobium carbide, and tantalum carbide, and it should also occur in several other metal compounds. This work gives insights into the physics of heat conduction in solids and identifies a new heat flow regime driven by the interplay between Fermi surfaces and phonon dispersions.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/physrevlett.121.175901</identifier><identifier>PMID: 30411930</identifier><language>eng</language><publisher>United States: American Physical Society</publisher><subject>Conduction heating ; Conductive heat transfer ; Crystal lattices ; Electrons ; Fermi surfaces ; First principles ; Heat transmission ; MATERIALS SCIENCE ; Metal carbides ; Metal compounds ; Nesting ; Niobium carbide ; Phonons ; Tantalum ; Tantalum carbide ; Thermal conductivity ; Transition metals ; Vanadium carbide</subject><ispartof>Physical review letters, 2018-10, Vol.121 (17), p.175901-175901, Article 175901</ispartof><rights>Copyright American Physical Society Oct 26, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c480t-df01553232c97158e2a0e437f1aa9b5eeefbd4a9d2187269bfaf5f43d01c39623</citedby><cites>FETCH-LOGICAL-c480t-df01553232c97158e2a0e437f1aa9b5eeefbd4a9d2187269bfaf5f43d01c39623</cites><orcidid>0000000196457993</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,781,785,886,27926,27927</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30411930$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1479763$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Chunhua</creatorcontrib><creatorcontrib>Ravichandran, Navaneetha K</creatorcontrib><creatorcontrib>Lindsay, Lucas</creatorcontrib><creatorcontrib>Broido, David</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Fermi Surface Nesting and Phonon Frequency Gap Drive Anomalous Thermal Transport</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>The lattice thermal conductivity, k_{L}, of typical metallic and nonmetallic crystals decreases rapidly with increasing temperature because phonons interact more strongly with other phonons than they do with electrons. Using first principles calculations, we show that k_{L} can become nearly independent of temperature in metals that have nested Fermi surfaces and large frequency gaps between acoustic and optic phonons. Then, the interactions between phonons and electrons become much stronger than the mutual interactions between phonons, giving the fundamentally different k_{L} behavior. This striking trend is revealed here in the group V transition metal carbides, vanadium carbide, niobium carbide, and tantalum carbide, and it should also occur in several other metal compounds. This work gives insights into the physics of heat conduction in solids and identifies a new heat flow regime driven by the interplay between Fermi surfaces and phonon dispersions.</description><subject>Conduction heating</subject><subject>Conductive heat transfer</subject><subject>Crystal lattices</subject><subject>Electrons</subject><subject>Fermi surfaces</subject><subject>First principles</subject><subject>Heat transmission</subject><subject>MATERIALS SCIENCE</subject><subject>Metal carbides</subject><subject>Metal compounds</subject><subject>Nesting</subject><subject>Niobium carbide</subject><subject>Phonons</subject><subject>Tantalum</subject><subject>Tantalum carbide</subject><subject>Thermal conductivity</subject><subject>Transition metals</subject><subject>Vanadium carbide</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkcGO0zAQhi0EYsvCK6wsuHBJmbGTOD6uFrogVVBBOVuuM6FZJXawk0p9e7zqwoHTXL7_nxl9jN0grBFBfpiO5xTpNNA8r1HgGlWlAZ-xFYLShUIsn7MVgMRCA6gr9iqlBwBAUTcv2ZWEElFLWLHdhuLY8x9L7Kwj_pXS3Ptf3PqW747BB883kX4v5N2Z39uJf4z9ifitD6MdwpL4_pjzduD7aH2aQpxfsxedHRK9eZrX7Ofm0_7uc7H9dv_l7nZbuLKBuWg7wKqSQgqnFVYNCQtUStWhtfpQEVF3aEurW4GNErU-dLarulK2gE7qWshr9vbSG_LFJrl-Jnd0wXtys8FSaVXLDL2_QFMM-Yk0m7FPjobBesrXG4FSCNGAwoy--w99CEv0-YVHCgXkrVWm6gvlYkhZQGem2I82ng2CeRRjdlnMdzptsxiTxZiLmBy8eapfDiO1_2J_Tcg_mhyLNg</recordid><startdate>20181022</startdate><enddate>20181022</enddate><creator>Li, Chunhua</creator><creator>Ravichandran, Navaneetha K</creator><creator>Lindsay, Lucas</creator><creator>Broido, David</creator><general>American Physical Society</general><general>American Physical Society (APS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000196457993</orcidid></search><sort><creationdate>20181022</creationdate><title>Fermi Surface Nesting and Phonon Frequency Gap Drive Anomalous Thermal Transport</title><author>Li, Chunhua ; Ravichandran, Navaneetha K ; Lindsay, Lucas ; Broido, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c480t-df01553232c97158e2a0e437f1aa9b5eeefbd4a9d2187269bfaf5f43d01c39623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Conduction heating</topic><topic>Conductive heat transfer</topic><topic>Crystal lattices</topic><topic>Electrons</topic><topic>Fermi surfaces</topic><topic>First principles</topic><topic>Heat transmission</topic><topic>MATERIALS SCIENCE</topic><topic>Metal carbides</topic><topic>Metal compounds</topic><topic>Nesting</topic><topic>Niobium carbide</topic><topic>Phonons</topic><topic>Tantalum</topic><topic>Tantalum carbide</topic><topic>Thermal conductivity</topic><topic>Transition metals</topic><topic>Vanadium carbide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Chunhua</creatorcontrib><creatorcontrib>Ravichandran, Navaneetha K</creatorcontrib><creatorcontrib>Lindsay, Lucas</creatorcontrib><creatorcontrib>Broido, David</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Chunhua</au><au>Ravichandran, Navaneetha K</au><au>Lindsay, Lucas</au><au>Broido, David</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fermi Surface Nesting and Phonon Frequency Gap Drive Anomalous Thermal Transport</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2018-10-22</date><risdate>2018</risdate><volume>121</volume><issue>17</issue><spage>175901</spage><epage>175901</epage><pages>175901-175901</pages><artnum>175901</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>The lattice thermal conductivity, k_{L}, of typical metallic and nonmetallic crystals decreases rapidly with increasing temperature because phonons interact more strongly with other phonons than they do with electrons. Using first principles calculations, we show that k_{L} can become nearly independent of temperature in metals that have nested Fermi surfaces and large frequency gaps between acoustic and optic phonons. Then, the interactions between phonons and electrons become much stronger than the mutual interactions between phonons, giving the fundamentally different k_{L} behavior. This striking trend is revealed here in the group V transition metal carbides, vanadium carbide, niobium carbide, and tantalum carbide, and it should also occur in several other metal compounds. This work gives insights into the physics of heat conduction in solids and identifies a new heat flow regime driven by the interplay between Fermi surfaces and phonon dispersions.</abstract><cop>United States</cop><pub>American Physical Society</pub><pmid>30411930</pmid><doi>10.1103/physrevlett.121.175901</doi><tpages>1</tpages><orcidid>https://orcid.org/0000000196457993</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2018-10, Vol.121 (17), p.175901-175901, Article 175901
issn 0031-9007
1079-7114
language eng
recordid cdi_osti_scitechconnect_1479763
source American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)
subjects Conduction heating
Conductive heat transfer
Crystal lattices
Electrons
Fermi surfaces
First principles
Heat transmission
MATERIALS SCIENCE
Metal carbides
Metal compounds
Nesting
Niobium carbide
Phonons
Tantalum
Tantalum carbide
Thermal conductivity
Transition metals
Vanadium carbide
title Fermi Surface Nesting and Phonon Frequency Gap Drive Anomalous Thermal Transport
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T09%3A47%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fermi%20Surface%20Nesting%20and%20Phonon%20Frequency%20Gap%20Drive%20Anomalous%20Thermal%20Transport&rft.jtitle=Physical%20review%20letters&rft.au=Li,%20Chunhua&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2018-10-22&rft.volume=121&rft.issue=17&rft.spage=175901&rft.epage=175901&rft.pages=175901-175901&rft.artnum=175901&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/physrevlett.121.175901&rft_dat=%3Cproquest_osti_%3E2131203965%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c480t-df01553232c97158e2a0e437f1aa9b5eeefbd4a9d2187269bfaf5f43d01c39623%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2131203965&rft_id=info:pmid/30411930&rfr_iscdi=true