Loading…
Induced versus intrinsic magnetic moments in ultrafast magnetization dynamics
Ferromagnetic metal alloys are today commonly used in spintronic and magnetic data storage devices. These multicompound structures consist of several magnetic sublattices exhibiting both intrinsic and induced magnetic moments. Here, we study the response of the element-specific magnetization dynamic...
Saved in:
Published in: | Physical review. B 2018-11, Vol.98 (17), p.174419, Article 174419 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Ferromagnetic metal alloys are today commonly used in spintronic and magnetic data storage devices. These multicompound structures consist of several magnetic sublattices exhibiting both intrinsic and induced magnetic moments. Here, we study the response of the element-specific magnetization dynamics for thin film systems based on purely intrinsic (CoFeB) and partially induced (FePt) magnetic moments using extreme ultraviolet pulses from high-harmonic generation (HHG) as an element-sensitive probe. In FePt, on the one hand, we observe an identical normalized transient magnetization for Fe and Pt throughout both the ultrafast demagnetization and the subsequent remagnetization. On the other hand, Co and Fe show a clear difference in the asymptotic limit of the remagnetization process in CoFeB, which is supported by calculations for the temperature-dependent behavior of the equilibrium magnetization using a dynamic spin model. Thus, in this work, we provide a vital step toward a comprehensive understanding of ultrafast light-induced magnetization dynamics in ferromagnetic alloys with sublattices of intrinsic and induced magnetic moments. |
---|---|
ISSN: | 2469-9950 2469-9969 |
DOI: | 10.1103/PhysRevB.98.174419 |