Loading…
Empowering multicomponent cathode materials for sodium ion batteries by exploring three-dimensional compositional heterogeneities
Affordable sodium ion batteries hold great promise for revolutionizing stationary energy storage technologies. Sodium layered cathode materials are usually multicomponent transition metal (TM) oxides and each TM plays a unique role in the operating cathode chemistry, e.g. , redox activity, structura...
Saved in:
Published in: | Energy & environmental science 2018-01, Vol.11 (9), p.2496-2508 |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c325t-3777c939858aa15fda8aa175b5290f0a8838591bcc0864deb0d482378c2b52ac3 |
---|---|
cites | cdi_FETCH-LOGICAL-c325t-3777c939858aa15fda8aa175b5290f0a8838591bcc0864deb0d482378c2b52ac3 |
container_end_page | 2508 |
container_issue | 9 |
container_start_page | 2496 |
container_title | Energy & environmental science |
container_volume | 11 |
creator | Rahman, Muhammad Mominur Xu, Yahong Cheng, Hao Shi, Qianli Kou, Ronghui Mu, Linqin Liu, Qi Xia, Sihao Xiao, Xianghui Sun, Cheng-Jun Sokaras, Dimosthenis Nordlund, Dennis Zheng, Jin-Cheng Liu, Yijin Lin, Feng |
description | Affordable sodium ion batteries hold great promise for revolutionizing stationary energy storage technologies. Sodium layered cathode materials are usually multicomponent transition metal (TM) oxides and each TM plays a unique role in the operating cathode chemistry,
e.g.
, redox activity, structural stabilization. Engineering the three-dimensional (3D) distribution of TM cations in individual cathode particles can take advantage of a depth-dependent charging mechanism and enable a path towards tuning local TM–O chemical environments and building resilience against cathode–electrolyte interfacial reactions that are responsible for capacity fading, voltage decay and safety hazards. In this study, we create 3D compositional heterogeneity in a ternary and biphasic (O3–P3) sodium layered cathode material (Na
0.9
Cu
0.2
Fe
0.28
Mn
0.52
O
2
). The cells containing this material deliver stable voltage profiles, and discharge capacities of 125 mA h g
−1
at C/10 with almost no capacity fading after 100 cycles and 75 mA h g
−1
at 1C with negligible capacity fading after 200 cycles. The direct performance comparison shows that this material outperforms other materials with similar global compositions but different mesoscale chemical distributions. Synchrotron X-ray spectroscopy/imaging and density functional theory studies reveal depth-dependent chemical environments due to changes to factors such as charge compensation and strength of orbital hybridization. Finally, 3D spectroscopic tomography illuminates the path towards optimizing multicomponent sodium layered cathode materials, to prevent the migration of TMs upon prolonged cycling. The study reports an inaugural effort of multifaceted and counterintuitive investigation of sodium layered cathode materials and strongly implies that there is plenty of room at the bottom by tuning nano/meso scale chemical distributions for stable cathode chemistry. |
doi_str_mv | 10.1039/C8EE00309B |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1484286</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2102993127</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-3777c939858aa15fda8aa175b5290f0a8838591bcc0864deb0d482378c2b52ac3</originalsourceid><addsrcrecordid>eNpFkctOwzAQRS0EEqWw4Qss2CEF_EhiewlVeUiV2MA6cpxJ6yqJi-0KuuTPcRsQqzuPM1cjXYQuKbmlhKu7mZzPCeFEPRyhCRVFnhWClMd_danYKToLYU1IyYhQE_Q97zfuE7wdlrjfdtEalwYDDBEbHVeuAdzrmPa6C7h1HgfX2G2PrRtwreN-AwHXOwxfm84dbOLKA2SN7WEICdMdPngGG8duBenKLWGANIFwjk7aZA4XvzpF74_zt9lztnh9epndLzLDWREzLoQwiitZSK1p0TZ6r6KoC6ZIS7SUXBaK1sYQWeYN1KTJJeNCGpYQbfgUXY2-LkRbBWMjmJVxwwAmVjSXOZNlgq5HaOPdxxZCrNZu69PXoWKUMKU4ZSJRNyNlvAvBQ1ttvO2131WUVPscqv8c-A9U731h</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2102993127</pqid></control><display><type>article</type><title>Empowering multicomponent cathode materials for sodium ion batteries by exploring three-dimensional compositional heterogeneities</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Rahman, Muhammad Mominur ; Xu, Yahong ; Cheng, Hao ; Shi, Qianli ; Kou, Ronghui ; Mu, Linqin ; Liu, Qi ; Xia, Sihao ; Xiao, Xianghui ; Sun, Cheng-Jun ; Sokaras, Dimosthenis ; Nordlund, Dennis ; Zheng, Jin-Cheng ; Liu, Yijin ; Lin, Feng</creator><creatorcontrib>Rahman, Muhammad Mominur ; Xu, Yahong ; Cheng, Hao ; Shi, Qianli ; Kou, Ronghui ; Mu, Linqin ; Liu, Qi ; Xia, Sihao ; Xiao, Xianghui ; Sun, Cheng-Jun ; Sokaras, Dimosthenis ; Nordlund, Dennis ; Zheng, Jin-Cheng ; Liu, Yijin ; Lin, Feng ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>Affordable sodium ion batteries hold great promise for revolutionizing stationary energy storage technologies. Sodium layered cathode materials are usually multicomponent transition metal (TM) oxides and each TM plays a unique role in the operating cathode chemistry,
e.g.
, redox activity, structural stabilization. Engineering the three-dimensional (3D) distribution of TM cations in individual cathode particles can take advantage of a depth-dependent charging mechanism and enable a path towards tuning local TM–O chemical environments and building resilience against cathode–electrolyte interfacial reactions that are responsible for capacity fading, voltage decay and safety hazards. In this study, we create 3D compositional heterogeneity in a ternary and biphasic (O3–P3) sodium layered cathode material (Na
0.9
Cu
0.2
Fe
0.28
Mn
0.52
O
2
). The cells containing this material deliver stable voltage profiles, and discharge capacities of 125 mA h g
−1
at C/10 with almost no capacity fading after 100 cycles and 75 mA h g
−1
at 1C with negligible capacity fading after 200 cycles. The direct performance comparison shows that this material outperforms other materials with similar global compositions but different mesoscale chemical distributions. Synchrotron X-ray spectroscopy/imaging and density functional theory studies reveal depth-dependent chemical environments due to changes to factors such as charge compensation and strength of orbital hybridization. Finally, 3D spectroscopic tomography illuminates the path towards optimizing multicomponent sodium layered cathode materials, to prevent the migration of TMs upon prolonged cycling. The study reports an inaugural effort of multifaceted and counterintuitive investigation of sodium layered cathode materials and strongly implies that there is plenty of room at the bottom by tuning nano/meso scale chemical distributions for stable cathode chemistry.</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/C8EE00309B</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Batteries ; Cathodes ; Cations ; Chemical composition ; Chemical reactions ; Density functional theory ; Electric potential ; Electrode materials ; Electrolytic cells ; ENERGY STORAGE ; Fading ; Hazards ; Heterogeneity ; Interface reactions ; Mesoscale spectroscopy ; Organic chemistry ; Oxides ; Sodium ; Sodium-ion batteries ; Storage batteries ; Synchrotron radiation ; Tuning ; Voltage ; X-ray spectroscopy</subject><ispartof>Energy & environmental science, 2018-01, Vol.11 (9), p.2496-2508</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-3777c939858aa15fda8aa175b5290f0a8838591bcc0864deb0d482378c2b52ac3</citedby><cites>FETCH-LOGICAL-c325t-3777c939858aa15fda8aa175b5290f0a8838591bcc0864deb0d482378c2b52ac3</cites><orcidid>0000-0002-8417-2488 ; 0000-0002-6292-3236 ; 0000-0002-3729-3148 ; 0000-0001-6814-456X ; 000000016814456X ; 0000000284172488 ; 0000000262923236 ; 0000000237293148</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><backlink>$$Uhttps://www.osti.gov/servlets/purl/1484286$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Rahman, Muhammad Mominur</creatorcontrib><creatorcontrib>Xu, Yahong</creatorcontrib><creatorcontrib>Cheng, Hao</creatorcontrib><creatorcontrib>Shi, Qianli</creatorcontrib><creatorcontrib>Kou, Ronghui</creatorcontrib><creatorcontrib>Mu, Linqin</creatorcontrib><creatorcontrib>Liu, Qi</creatorcontrib><creatorcontrib>Xia, Sihao</creatorcontrib><creatorcontrib>Xiao, Xianghui</creatorcontrib><creatorcontrib>Sun, Cheng-Jun</creatorcontrib><creatorcontrib>Sokaras, Dimosthenis</creatorcontrib><creatorcontrib>Nordlund, Dennis</creatorcontrib><creatorcontrib>Zheng, Jin-Cheng</creatorcontrib><creatorcontrib>Liu, Yijin</creatorcontrib><creatorcontrib>Lin, Feng</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Empowering multicomponent cathode materials for sodium ion batteries by exploring three-dimensional compositional heterogeneities</title><title>Energy & environmental science</title><description>Affordable sodium ion batteries hold great promise for revolutionizing stationary energy storage technologies. Sodium layered cathode materials are usually multicomponent transition metal (TM) oxides and each TM plays a unique role in the operating cathode chemistry,
e.g.
, redox activity, structural stabilization. Engineering the three-dimensional (3D) distribution of TM cations in individual cathode particles can take advantage of a depth-dependent charging mechanism and enable a path towards tuning local TM–O chemical environments and building resilience against cathode–electrolyte interfacial reactions that are responsible for capacity fading, voltage decay and safety hazards. In this study, we create 3D compositional heterogeneity in a ternary and biphasic (O3–P3) sodium layered cathode material (Na
0.9
Cu
0.2
Fe
0.28
Mn
0.52
O
2
). The cells containing this material deliver stable voltage profiles, and discharge capacities of 125 mA h g
−1
at C/10 with almost no capacity fading after 100 cycles and 75 mA h g
−1
at 1C with negligible capacity fading after 200 cycles. The direct performance comparison shows that this material outperforms other materials with similar global compositions but different mesoscale chemical distributions. Synchrotron X-ray spectroscopy/imaging and density functional theory studies reveal depth-dependent chemical environments due to changes to factors such as charge compensation and strength of orbital hybridization. Finally, 3D spectroscopic tomography illuminates the path towards optimizing multicomponent sodium layered cathode materials, to prevent the migration of TMs upon prolonged cycling. The study reports an inaugural effort of multifaceted and counterintuitive investigation of sodium layered cathode materials and strongly implies that there is plenty of room at the bottom by tuning nano/meso scale chemical distributions for stable cathode chemistry.</description><subject>Batteries</subject><subject>Cathodes</subject><subject>Cations</subject><subject>Chemical composition</subject><subject>Chemical reactions</subject><subject>Density functional theory</subject><subject>Electric potential</subject><subject>Electrode materials</subject><subject>Electrolytic cells</subject><subject>ENERGY STORAGE</subject><subject>Fading</subject><subject>Hazards</subject><subject>Heterogeneity</subject><subject>Interface reactions</subject><subject>Mesoscale spectroscopy</subject><subject>Organic chemistry</subject><subject>Oxides</subject><subject>Sodium</subject><subject>Sodium-ion batteries</subject><subject>Storage batteries</subject><subject>Synchrotron radiation</subject><subject>Tuning</subject><subject>Voltage</subject><subject>X-ray spectroscopy</subject><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpFkctOwzAQRS0EEqWw4Qss2CEF_EhiewlVeUiV2MA6cpxJ6yqJi-0KuuTPcRsQqzuPM1cjXYQuKbmlhKu7mZzPCeFEPRyhCRVFnhWClMd_danYKToLYU1IyYhQE_Q97zfuE7wdlrjfdtEalwYDDBEbHVeuAdzrmPa6C7h1HgfX2G2PrRtwreN-AwHXOwxfm84dbOLKA2SN7WEICdMdPngGG8duBenKLWGANIFwjk7aZA4XvzpF74_zt9lztnh9epndLzLDWREzLoQwiitZSK1p0TZ6r6KoC6ZIS7SUXBaK1sYQWeYN1KTJJeNCGpYQbfgUXY2-LkRbBWMjmJVxwwAmVjSXOZNlgq5HaOPdxxZCrNZu69PXoWKUMKU4ZSJRNyNlvAvBQ1ttvO2131WUVPscqv8c-A9U731h</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Rahman, Muhammad Mominur</creator><creator>Xu, Yahong</creator><creator>Cheng, Hao</creator><creator>Shi, Qianli</creator><creator>Kou, Ronghui</creator><creator>Mu, Linqin</creator><creator>Liu, Qi</creator><creator>Xia, Sihao</creator><creator>Xiao, Xianghui</creator><creator>Sun, Cheng-Jun</creator><creator>Sokaras, Dimosthenis</creator><creator>Nordlund, Dennis</creator><creator>Zheng, Jin-Cheng</creator><creator>Liu, Yijin</creator><creator>Lin, Feng</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-8417-2488</orcidid><orcidid>https://orcid.org/0000-0002-6292-3236</orcidid><orcidid>https://orcid.org/0000-0002-3729-3148</orcidid><orcidid>https://orcid.org/0000-0001-6814-456X</orcidid><orcidid>https://orcid.org/000000016814456X</orcidid><orcidid>https://orcid.org/0000000284172488</orcidid><orcidid>https://orcid.org/0000000262923236</orcidid><orcidid>https://orcid.org/0000000237293148</orcidid></search><sort><creationdate>20180101</creationdate><title>Empowering multicomponent cathode materials for sodium ion batteries by exploring three-dimensional compositional heterogeneities</title><author>Rahman, Muhammad Mominur ; Xu, Yahong ; Cheng, Hao ; Shi, Qianli ; Kou, Ronghui ; Mu, Linqin ; Liu, Qi ; Xia, Sihao ; Xiao, Xianghui ; Sun, Cheng-Jun ; Sokaras, Dimosthenis ; Nordlund, Dennis ; Zheng, Jin-Cheng ; Liu, Yijin ; Lin, Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-3777c939858aa15fda8aa175b5290f0a8838591bcc0864deb0d482378c2b52ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Batteries</topic><topic>Cathodes</topic><topic>Cations</topic><topic>Chemical composition</topic><topic>Chemical reactions</topic><topic>Density functional theory</topic><topic>Electric potential</topic><topic>Electrode materials</topic><topic>Electrolytic cells</topic><topic>ENERGY STORAGE</topic><topic>Fading</topic><topic>Hazards</topic><topic>Heterogeneity</topic><topic>Interface reactions</topic><topic>Mesoscale spectroscopy</topic><topic>Organic chemistry</topic><topic>Oxides</topic><topic>Sodium</topic><topic>Sodium-ion batteries</topic><topic>Storage batteries</topic><topic>Synchrotron radiation</topic><topic>Tuning</topic><topic>Voltage</topic><topic>X-ray spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rahman, Muhammad Mominur</creatorcontrib><creatorcontrib>Xu, Yahong</creatorcontrib><creatorcontrib>Cheng, Hao</creatorcontrib><creatorcontrib>Shi, Qianli</creatorcontrib><creatorcontrib>Kou, Ronghui</creatorcontrib><creatorcontrib>Mu, Linqin</creatorcontrib><creatorcontrib>Liu, Qi</creatorcontrib><creatorcontrib>Xia, Sihao</creatorcontrib><creatorcontrib>Xiao, Xianghui</creatorcontrib><creatorcontrib>Sun, Cheng-Jun</creatorcontrib><creatorcontrib>Sokaras, Dimosthenis</creatorcontrib><creatorcontrib>Nordlund, Dennis</creatorcontrib><creatorcontrib>Zheng, Jin-Cheng</creatorcontrib><creatorcontrib>Liu, Yijin</creatorcontrib><creatorcontrib>Lin, Feng</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Energy & environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rahman, Muhammad Mominur</au><au>Xu, Yahong</au><au>Cheng, Hao</au><au>Shi, Qianli</au><au>Kou, Ronghui</au><au>Mu, Linqin</au><au>Liu, Qi</au><au>Xia, Sihao</au><au>Xiao, Xianghui</au><au>Sun, Cheng-Jun</au><au>Sokaras, Dimosthenis</au><au>Nordlund, Dennis</au><au>Zheng, Jin-Cheng</au><au>Liu, Yijin</au><au>Lin, Feng</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Empowering multicomponent cathode materials for sodium ion batteries by exploring three-dimensional compositional heterogeneities</atitle><jtitle>Energy & environmental science</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>11</volume><issue>9</issue><spage>2496</spage><epage>2508</epage><pages>2496-2508</pages><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>Affordable sodium ion batteries hold great promise for revolutionizing stationary energy storage technologies. Sodium layered cathode materials are usually multicomponent transition metal (TM) oxides and each TM plays a unique role in the operating cathode chemistry,
e.g.
, redox activity, structural stabilization. Engineering the three-dimensional (3D) distribution of TM cations in individual cathode particles can take advantage of a depth-dependent charging mechanism and enable a path towards tuning local TM–O chemical environments and building resilience against cathode–electrolyte interfacial reactions that are responsible for capacity fading, voltage decay and safety hazards. In this study, we create 3D compositional heterogeneity in a ternary and biphasic (O3–P3) sodium layered cathode material (Na
0.9
Cu
0.2
Fe
0.28
Mn
0.52
O
2
). The cells containing this material deliver stable voltage profiles, and discharge capacities of 125 mA h g
−1
at C/10 with almost no capacity fading after 100 cycles and 75 mA h g
−1
at 1C with negligible capacity fading after 200 cycles. The direct performance comparison shows that this material outperforms other materials with similar global compositions but different mesoscale chemical distributions. Synchrotron X-ray spectroscopy/imaging and density functional theory studies reveal depth-dependent chemical environments due to changes to factors such as charge compensation and strength of orbital hybridization. Finally, 3D spectroscopic tomography illuminates the path towards optimizing multicomponent sodium layered cathode materials, to prevent the migration of TMs upon prolonged cycling. The study reports an inaugural effort of multifaceted and counterintuitive investigation of sodium layered cathode materials and strongly implies that there is plenty of room at the bottom by tuning nano/meso scale chemical distributions for stable cathode chemistry.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/C8EE00309B</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8417-2488</orcidid><orcidid>https://orcid.org/0000-0002-6292-3236</orcidid><orcidid>https://orcid.org/0000-0002-3729-3148</orcidid><orcidid>https://orcid.org/0000-0001-6814-456X</orcidid><orcidid>https://orcid.org/000000016814456X</orcidid><orcidid>https://orcid.org/0000000284172488</orcidid><orcidid>https://orcid.org/0000000262923236</orcidid><orcidid>https://orcid.org/0000000237293148</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1754-5692 |
ispartof | Energy & environmental science, 2018-01, Vol.11 (9), p.2496-2508 |
issn | 1754-5692 1754-5706 |
language | eng |
recordid | cdi_osti_scitechconnect_1484286 |
source | Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list) |
subjects | Batteries Cathodes Cations Chemical composition Chemical reactions Density functional theory Electric potential Electrode materials Electrolytic cells ENERGY STORAGE Fading Hazards Heterogeneity Interface reactions Mesoscale spectroscopy Organic chemistry Oxides Sodium Sodium-ion batteries Storage batteries Synchrotron radiation Tuning Voltage X-ray spectroscopy |
title | Empowering multicomponent cathode materials for sodium ion batteries by exploring three-dimensional compositional heterogeneities |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-09T10%3A29%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Empowering%20multicomponent%20cathode%20materials%20for%20sodium%20ion%20batteries%20by%20exploring%20three-dimensional%20compositional%20heterogeneities&rft.jtitle=Energy%20&%20environmental%20science&rft.au=Rahman,%20Muhammad%20Mominur&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2018-01-01&rft.volume=11&rft.issue=9&rft.spage=2496&rft.epage=2508&rft.pages=2496-2508&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/C8EE00309B&rft_dat=%3Cproquest_osti_%3E2102993127%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c325t-3777c939858aa15fda8aa175b5290f0a8838591bcc0864deb0d482378c2b52ac3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2102993127&rft_id=info:pmid/&rfr_iscdi=true |