Loading…

Empowering multicomponent cathode materials for sodium ion batteries by exploring three-dimensional compositional heterogeneities

Affordable sodium ion batteries hold great promise for revolutionizing stationary energy storage technologies. Sodium layered cathode materials are usually multicomponent transition metal (TM) oxides and each TM plays a unique role in the operating cathode chemistry, e.g. , redox activity, structura...

Full description

Saved in:
Bibliographic Details
Published in:Energy & environmental science 2018-01, Vol.11 (9), p.2496-2508
Main Authors: Rahman, Muhammad Mominur, Xu, Yahong, Cheng, Hao, Shi, Qianli, Kou, Ronghui, Mu, Linqin, Liu, Qi, Xia, Sihao, Xiao, Xianghui, Sun, Cheng-Jun, Sokaras, Dimosthenis, Nordlund, Dennis, Zheng, Jin-Cheng, Liu, Yijin, Lin, Feng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c325t-3777c939858aa15fda8aa175b5290f0a8838591bcc0864deb0d482378c2b52ac3
cites cdi_FETCH-LOGICAL-c325t-3777c939858aa15fda8aa175b5290f0a8838591bcc0864deb0d482378c2b52ac3
container_end_page 2508
container_issue 9
container_start_page 2496
container_title Energy & environmental science
container_volume 11
creator Rahman, Muhammad Mominur
Xu, Yahong
Cheng, Hao
Shi, Qianli
Kou, Ronghui
Mu, Linqin
Liu, Qi
Xia, Sihao
Xiao, Xianghui
Sun, Cheng-Jun
Sokaras, Dimosthenis
Nordlund, Dennis
Zheng, Jin-Cheng
Liu, Yijin
Lin, Feng
description Affordable sodium ion batteries hold great promise for revolutionizing stationary energy storage technologies. Sodium layered cathode materials are usually multicomponent transition metal (TM) oxides and each TM plays a unique role in the operating cathode chemistry, e.g. , redox activity, structural stabilization. Engineering the three-dimensional (3D) distribution of TM cations in individual cathode particles can take advantage of a depth-dependent charging mechanism and enable a path towards tuning local TM–O chemical environments and building resilience against cathode–electrolyte interfacial reactions that are responsible for capacity fading, voltage decay and safety hazards. In this study, we create 3D compositional heterogeneity in a ternary and biphasic (O3–P3) sodium layered cathode material (Na 0.9 Cu 0.2 Fe 0.28 Mn 0.52 O 2 ). The cells containing this material deliver stable voltage profiles, and discharge capacities of 125 mA h g −1 at C/10 with almost no capacity fading after 100 cycles and 75 mA h g −1 at 1C with negligible capacity fading after 200 cycles. The direct performance comparison shows that this material outperforms other materials with similar global compositions but different mesoscale chemical distributions. Synchrotron X-ray spectroscopy/imaging and density functional theory studies reveal depth-dependent chemical environments due to changes to factors such as charge compensation and strength of orbital hybridization. Finally, 3D spectroscopic tomography illuminates the path towards optimizing multicomponent sodium layered cathode materials, to prevent the migration of TMs upon prolonged cycling. The study reports an inaugural effort of multifaceted and counterintuitive investigation of sodium layered cathode materials and strongly implies that there is plenty of room at the bottom by tuning nano/meso scale chemical distributions for stable cathode chemistry.
doi_str_mv 10.1039/C8EE00309B
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1484286</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2102993127</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-3777c939858aa15fda8aa175b5290f0a8838591bcc0864deb0d482378c2b52ac3</originalsourceid><addsrcrecordid>eNpFkctOwzAQRS0EEqWw4Qss2CEF_EhiewlVeUiV2MA6cpxJ6yqJi-0KuuTPcRsQqzuPM1cjXYQuKbmlhKu7mZzPCeFEPRyhCRVFnhWClMd_danYKToLYU1IyYhQE_Q97zfuE7wdlrjfdtEalwYDDBEbHVeuAdzrmPa6C7h1HgfX2G2PrRtwreN-AwHXOwxfm84dbOLKA2SN7WEICdMdPngGG8duBenKLWGANIFwjk7aZA4XvzpF74_zt9lztnh9epndLzLDWREzLoQwiitZSK1p0TZ6r6KoC6ZIS7SUXBaK1sYQWeYN1KTJJeNCGpYQbfgUXY2-LkRbBWMjmJVxwwAmVjSXOZNlgq5HaOPdxxZCrNZu69PXoWKUMKU4ZSJRNyNlvAvBQ1ttvO2131WUVPscqv8c-A9U731h</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2102993127</pqid></control><display><type>article</type><title>Empowering multicomponent cathode materials for sodium ion batteries by exploring three-dimensional compositional heterogeneities</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Rahman, Muhammad Mominur ; Xu, Yahong ; Cheng, Hao ; Shi, Qianli ; Kou, Ronghui ; Mu, Linqin ; Liu, Qi ; Xia, Sihao ; Xiao, Xianghui ; Sun, Cheng-Jun ; Sokaras, Dimosthenis ; Nordlund, Dennis ; Zheng, Jin-Cheng ; Liu, Yijin ; Lin, Feng</creator><creatorcontrib>Rahman, Muhammad Mominur ; Xu, Yahong ; Cheng, Hao ; Shi, Qianli ; Kou, Ronghui ; Mu, Linqin ; Liu, Qi ; Xia, Sihao ; Xiao, Xianghui ; Sun, Cheng-Jun ; Sokaras, Dimosthenis ; Nordlund, Dennis ; Zheng, Jin-Cheng ; Liu, Yijin ; Lin, Feng ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>Affordable sodium ion batteries hold great promise for revolutionizing stationary energy storage technologies. Sodium layered cathode materials are usually multicomponent transition metal (TM) oxides and each TM plays a unique role in the operating cathode chemistry, e.g. , redox activity, structural stabilization. Engineering the three-dimensional (3D) distribution of TM cations in individual cathode particles can take advantage of a depth-dependent charging mechanism and enable a path towards tuning local TM–O chemical environments and building resilience against cathode–electrolyte interfacial reactions that are responsible for capacity fading, voltage decay and safety hazards. In this study, we create 3D compositional heterogeneity in a ternary and biphasic (O3–P3) sodium layered cathode material (Na 0.9 Cu 0.2 Fe 0.28 Mn 0.52 O 2 ). The cells containing this material deliver stable voltage profiles, and discharge capacities of 125 mA h g −1 at C/10 with almost no capacity fading after 100 cycles and 75 mA h g −1 at 1C with negligible capacity fading after 200 cycles. The direct performance comparison shows that this material outperforms other materials with similar global compositions but different mesoscale chemical distributions. Synchrotron X-ray spectroscopy/imaging and density functional theory studies reveal depth-dependent chemical environments due to changes to factors such as charge compensation and strength of orbital hybridization. Finally, 3D spectroscopic tomography illuminates the path towards optimizing multicomponent sodium layered cathode materials, to prevent the migration of TMs upon prolonged cycling. The study reports an inaugural effort of multifaceted and counterintuitive investigation of sodium layered cathode materials and strongly implies that there is plenty of room at the bottom by tuning nano/meso scale chemical distributions for stable cathode chemistry.</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/C8EE00309B</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Batteries ; Cathodes ; Cations ; Chemical composition ; Chemical reactions ; Density functional theory ; Electric potential ; Electrode materials ; Electrolytic cells ; ENERGY STORAGE ; Fading ; Hazards ; Heterogeneity ; Interface reactions ; Mesoscale spectroscopy ; Organic chemistry ; Oxides ; Sodium ; Sodium-ion batteries ; Storage batteries ; Synchrotron radiation ; Tuning ; Voltage ; X-ray spectroscopy</subject><ispartof>Energy &amp; environmental science, 2018-01, Vol.11 (9), p.2496-2508</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-3777c939858aa15fda8aa175b5290f0a8838591bcc0864deb0d482378c2b52ac3</citedby><cites>FETCH-LOGICAL-c325t-3777c939858aa15fda8aa175b5290f0a8838591bcc0864deb0d482378c2b52ac3</cites><orcidid>0000-0002-8417-2488 ; 0000-0002-6292-3236 ; 0000-0002-3729-3148 ; 0000-0001-6814-456X ; 000000016814456X ; 0000000284172488 ; 0000000262923236 ; 0000000237293148</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><backlink>$$Uhttps://www.osti.gov/servlets/purl/1484286$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Rahman, Muhammad Mominur</creatorcontrib><creatorcontrib>Xu, Yahong</creatorcontrib><creatorcontrib>Cheng, Hao</creatorcontrib><creatorcontrib>Shi, Qianli</creatorcontrib><creatorcontrib>Kou, Ronghui</creatorcontrib><creatorcontrib>Mu, Linqin</creatorcontrib><creatorcontrib>Liu, Qi</creatorcontrib><creatorcontrib>Xia, Sihao</creatorcontrib><creatorcontrib>Xiao, Xianghui</creatorcontrib><creatorcontrib>Sun, Cheng-Jun</creatorcontrib><creatorcontrib>Sokaras, Dimosthenis</creatorcontrib><creatorcontrib>Nordlund, Dennis</creatorcontrib><creatorcontrib>Zheng, Jin-Cheng</creatorcontrib><creatorcontrib>Liu, Yijin</creatorcontrib><creatorcontrib>Lin, Feng</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Empowering multicomponent cathode materials for sodium ion batteries by exploring three-dimensional compositional heterogeneities</title><title>Energy &amp; environmental science</title><description>Affordable sodium ion batteries hold great promise for revolutionizing stationary energy storage technologies. Sodium layered cathode materials are usually multicomponent transition metal (TM) oxides and each TM plays a unique role in the operating cathode chemistry, e.g. , redox activity, structural stabilization. Engineering the three-dimensional (3D) distribution of TM cations in individual cathode particles can take advantage of a depth-dependent charging mechanism and enable a path towards tuning local TM–O chemical environments and building resilience against cathode–electrolyte interfacial reactions that are responsible for capacity fading, voltage decay and safety hazards. In this study, we create 3D compositional heterogeneity in a ternary and biphasic (O3–P3) sodium layered cathode material (Na 0.9 Cu 0.2 Fe 0.28 Mn 0.52 O 2 ). The cells containing this material deliver stable voltage profiles, and discharge capacities of 125 mA h g −1 at C/10 with almost no capacity fading after 100 cycles and 75 mA h g −1 at 1C with negligible capacity fading after 200 cycles. The direct performance comparison shows that this material outperforms other materials with similar global compositions but different mesoscale chemical distributions. Synchrotron X-ray spectroscopy/imaging and density functional theory studies reveal depth-dependent chemical environments due to changes to factors such as charge compensation and strength of orbital hybridization. Finally, 3D spectroscopic tomography illuminates the path towards optimizing multicomponent sodium layered cathode materials, to prevent the migration of TMs upon prolonged cycling. The study reports an inaugural effort of multifaceted and counterintuitive investigation of sodium layered cathode materials and strongly implies that there is plenty of room at the bottom by tuning nano/meso scale chemical distributions for stable cathode chemistry.</description><subject>Batteries</subject><subject>Cathodes</subject><subject>Cations</subject><subject>Chemical composition</subject><subject>Chemical reactions</subject><subject>Density functional theory</subject><subject>Electric potential</subject><subject>Electrode materials</subject><subject>Electrolytic cells</subject><subject>ENERGY STORAGE</subject><subject>Fading</subject><subject>Hazards</subject><subject>Heterogeneity</subject><subject>Interface reactions</subject><subject>Mesoscale spectroscopy</subject><subject>Organic chemistry</subject><subject>Oxides</subject><subject>Sodium</subject><subject>Sodium-ion batteries</subject><subject>Storage batteries</subject><subject>Synchrotron radiation</subject><subject>Tuning</subject><subject>Voltage</subject><subject>X-ray spectroscopy</subject><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpFkctOwzAQRS0EEqWw4Qss2CEF_EhiewlVeUiV2MA6cpxJ6yqJi-0KuuTPcRsQqzuPM1cjXYQuKbmlhKu7mZzPCeFEPRyhCRVFnhWClMd_danYKToLYU1IyYhQE_Q97zfuE7wdlrjfdtEalwYDDBEbHVeuAdzrmPa6C7h1HgfX2G2PrRtwreN-AwHXOwxfm84dbOLKA2SN7WEICdMdPngGG8duBenKLWGANIFwjk7aZA4XvzpF74_zt9lztnh9epndLzLDWREzLoQwiitZSK1p0TZ6r6KoC6ZIS7SUXBaK1sYQWeYN1KTJJeNCGpYQbfgUXY2-LkRbBWMjmJVxwwAmVjSXOZNlgq5HaOPdxxZCrNZu69PXoWKUMKU4ZSJRNyNlvAvBQ1ttvO2131WUVPscqv8c-A9U731h</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Rahman, Muhammad Mominur</creator><creator>Xu, Yahong</creator><creator>Cheng, Hao</creator><creator>Shi, Qianli</creator><creator>Kou, Ronghui</creator><creator>Mu, Linqin</creator><creator>Liu, Qi</creator><creator>Xia, Sihao</creator><creator>Xiao, Xianghui</creator><creator>Sun, Cheng-Jun</creator><creator>Sokaras, Dimosthenis</creator><creator>Nordlund, Dennis</creator><creator>Zheng, Jin-Cheng</creator><creator>Liu, Yijin</creator><creator>Lin, Feng</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-8417-2488</orcidid><orcidid>https://orcid.org/0000-0002-6292-3236</orcidid><orcidid>https://orcid.org/0000-0002-3729-3148</orcidid><orcidid>https://orcid.org/0000-0001-6814-456X</orcidid><orcidid>https://orcid.org/000000016814456X</orcidid><orcidid>https://orcid.org/0000000284172488</orcidid><orcidid>https://orcid.org/0000000262923236</orcidid><orcidid>https://orcid.org/0000000237293148</orcidid></search><sort><creationdate>20180101</creationdate><title>Empowering multicomponent cathode materials for sodium ion batteries by exploring three-dimensional compositional heterogeneities</title><author>Rahman, Muhammad Mominur ; Xu, Yahong ; Cheng, Hao ; Shi, Qianli ; Kou, Ronghui ; Mu, Linqin ; Liu, Qi ; Xia, Sihao ; Xiao, Xianghui ; Sun, Cheng-Jun ; Sokaras, Dimosthenis ; Nordlund, Dennis ; Zheng, Jin-Cheng ; Liu, Yijin ; Lin, Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-3777c939858aa15fda8aa175b5290f0a8838591bcc0864deb0d482378c2b52ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Batteries</topic><topic>Cathodes</topic><topic>Cations</topic><topic>Chemical composition</topic><topic>Chemical reactions</topic><topic>Density functional theory</topic><topic>Electric potential</topic><topic>Electrode materials</topic><topic>Electrolytic cells</topic><topic>ENERGY STORAGE</topic><topic>Fading</topic><topic>Hazards</topic><topic>Heterogeneity</topic><topic>Interface reactions</topic><topic>Mesoscale spectroscopy</topic><topic>Organic chemistry</topic><topic>Oxides</topic><topic>Sodium</topic><topic>Sodium-ion batteries</topic><topic>Storage batteries</topic><topic>Synchrotron radiation</topic><topic>Tuning</topic><topic>Voltage</topic><topic>X-ray spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rahman, Muhammad Mominur</creatorcontrib><creatorcontrib>Xu, Yahong</creatorcontrib><creatorcontrib>Cheng, Hao</creatorcontrib><creatorcontrib>Shi, Qianli</creatorcontrib><creatorcontrib>Kou, Ronghui</creatorcontrib><creatorcontrib>Mu, Linqin</creatorcontrib><creatorcontrib>Liu, Qi</creatorcontrib><creatorcontrib>Xia, Sihao</creatorcontrib><creatorcontrib>Xiao, Xianghui</creatorcontrib><creatorcontrib>Sun, Cheng-Jun</creatorcontrib><creatorcontrib>Sokaras, Dimosthenis</creatorcontrib><creatorcontrib>Nordlund, Dennis</creatorcontrib><creatorcontrib>Zheng, Jin-Cheng</creatorcontrib><creatorcontrib>Liu, Yijin</creatorcontrib><creatorcontrib>Lin, Feng</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Energy &amp; environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rahman, Muhammad Mominur</au><au>Xu, Yahong</au><au>Cheng, Hao</au><au>Shi, Qianli</au><au>Kou, Ronghui</au><au>Mu, Linqin</au><au>Liu, Qi</au><au>Xia, Sihao</au><au>Xiao, Xianghui</au><au>Sun, Cheng-Jun</au><au>Sokaras, Dimosthenis</au><au>Nordlund, Dennis</au><au>Zheng, Jin-Cheng</au><au>Liu, Yijin</au><au>Lin, Feng</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Empowering multicomponent cathode materials for sodium ion batteries by exploring three-dimensional compositional heterogeneities</atitle><jtitle>Energy &amp; environmental science</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>11</volume><issue>9</issue><spage>2496</spage><epage>2508</epage><pages>2496-2508</pages><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>Affordable sodium ion batteries hold great promise for revolutionizing stationary energy storage technologies. Sodium layered cathode materials are usually multicomponent transition metal (TM) oxides and each TM plays a unique role in the operating cathode chemistry, e.g. , redox activity, structural stabilization. Engineering the three-dimensional (3D) distribution of TM cations in individual cathode particles can take advantage of a depth-dependent charging mechanism and enable a path towards tuning local TM–O chemical environments and building resilience against cathode–electrolyte interfacial reactions that are responsible for capacity fading, voltage decay and safety hazards. In this study, we create 3D compositional heterogeneity in a ternary and biphasic (O3–P3) sodium layered cathode material (Na 0.9 Cu 0.2 Fe 0.28 Mn 0.52 O 2 ). The cells containing this material deliver stable voltage profiles, and discharge capacities of 125 mA h g −1 at C/10 with almost no capacity fading after 100 cycles and 75 mA h g −1 at 1C with negligible capacity fading after 200 cycles. The direct performance comparison shows that this material outperforms other materials with similar global compositions but different mesoscale chemical distributions. Synchrotron X-ray spectroscopy/imaging and density functional theory studies reveal depth-dependent chemical environments due to changes to factors such as charge compensation and strength of orbital hybridization. Finally, 3D spectroscopic tomography illuminates the path towards optimizing multicomponent sodium layered cathode materials, to prevent the migration of TMs upon prolonged cycling. The study reports an inaugural effort of multifaceted and counterintuitive investigation of sodium layered cathode materials and strongly implies that there is plenty of room at the bottom by tuning nano/meso scale chemical distributions for stable cathode chemistry.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/C8EE00309B</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8417-2488</orcidid><orcidid>https://orcid.org/0000-0002-6292-3236</orcidid><orcidid>https://orcid.org/0000-0002-3729-3148</orcidid><orcidid>https://orcid.org/0000-0001-6814-456X</orcidid><orcidid>https://orcid.org/000000016814456X</orcidid><orcidid>https://orcid.org/0000000284172488</orcidid><orcidid>https://orcid.org/0000000262923236</orcidid><orcidid>https://orcid.org/0000000237293148</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1754-5692
ispartof Energy & environmental science, 2018-01, Vol.11 (9), p.2496-2508
issn 1754-5692
1754-5706
language eng
recordid cdi_osti_scitechconnect_1484286
source Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)
subjects Batteries
Cathodes
Cations
Chemical composition
Chemical reactions
Density functional theory
Electric potential
Electrode materials
Electrolytic cells
ENERGY STORAGE
Fading
Hazards
Heterogeneity
Interface reactions
Mesoscale spectroscopy
Organic chemistry
Oxides
Sodium
Sodium-ion batteries
Storage batteries
Synchrotron radiation
Tuning
Voltage
X-ray spectroscopy
title Empowering multicomponent cathode materials for sodium ion batteries by exploring three-dimensional compositional heterogeneities
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-09T10%3A29%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Empowering%20multicomponent%20cathode%20materials%20for%20sodium%20ion%20batteries%20by%20exploring%20three-dimensional%20compositional%20heterogeneities&rft.jtitle=Energy%20&%20environmental%20science&rft.au=Rahman,%20Muhammad%20Mominur&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2018-01-01&rft.volume=11&rft.issue=9&rft.spage=2496&rft.epage=2508&rft.pages=2496-2508&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/C8EE00309B&rft_dat=%3Cproquest_osti_%3E2102993127%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c325t-3777c939858aa15fda8aa175b5290f0a8838591bcc0864deb0d482378c2b52ac3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2102993127&rft_id=info:pmid/&rfr_iscdi=true