Loading…

Enhancement of Proton Conductivity in Nonporous Metal–Organic Frameworks: The Role of Framework Proton Density and Humidity

Owing to their inherent pore structure, porous metal–organic frameworks (MOFs) can undergo postsynthetic modification, such as loading extra-framework proton carriers. However, strategies for improving the proton conductivity for nonporous MOFs are largely lacking, although increasing numbers of non...

Full description

Saved in:
Bibliographic Details
Published in:Chemistry of materials 2018-11, Vol.30 (21), p.7593-7602
Main Authors: Pili, Simona, Rought, Peter, Kolokolov, Daniil I, Lin, Longfei, da Silva, Ivan, Cheng, Yongqiang, Marsh, Christopher, Silverwood, Ian P, García Sakai, Victoria, Li, Ming, Titman, Jeremy J, Knight, Lyndsey, Daemen, Luke L, Ramirez-Cuesta, Anibal J, Tang, Chiu C, Stepanov, Alexander G, Yang, Sihai, Schröder, Martin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a505t-a1837d72d79d5f0023b598ad7fdaf90f4c9c1d181eb587e204dc3ec2e96953463
cites cdi_FETCH-LOGICAL-a505t-a1837d72d79d5f0023b598ad7fdaf90f4c9c1d181eb587e204dc3ec2e96953463
container_end_page 7602
container_issue 21
container_start_page 7593
container_title Chemistry of materials
container_volume 30
creator Pili, Simona
Rought, Peter
Kolokolov, Daniil I
Lin, Longfei
da Silva, Ivan
Cheng, Yongqiang
Marsh, Christopher
Silverwood, Ian P
García Sakai, Victoria
Li, Ming
Titman, Jeremy J
Knight, Lyndsey
Daemen, Luke L
Ramirez-Cuesta, Anibal J
Tang, Chiu C
Stepanov, Alexander G
Yang, Sihai
Schröder, Martin
description Owing to their inherent pore structure, porous metal–organic frameworks (MOFs) can undergo postsynthetic modification, such as loading extra-framework proton carriers. However, strategies for improving the proton conductivity for nonporous MOFs are largely lacking, although increasing numbers of nonporous MOFs exhibit promising proton conductivities. Often, high humidity is required for nonporous MOFs to achieve high conductivities, but to date no clear mechanisms have been experimentally identified. Here we describe the new materials MFM-550­(M), [M­(HL1)], (H4L1 = biphenyl-4,4′-diphosphonic acid; M = La, Ce, Nd, Sm, Gd, Ho), MFM-550­(Ba), [Ba­(H2L1)], and MFM-555­(M), [M(HL2)], (H4L2 = benzene-1,4-diphosphonic acid; M = La, Ce, Nd, Sm, Gd, Ho), and report enhanced proton conductivities in these nonporous materials by (i) replacing the metal ion to one with a lower oxidation state, (ii) reducing the length of the organic ligand, and (iii) introducing additional acidic protons on the MOF surface. Increased framework proton density in these materials can lead to an enhancement in proton conductivity of up to 4 orders of magnitude. Additionally, we report a comprehensive investigation using in situ 2H NMR and neutron spectroscopy, coupled with molecular dynamic modeling, to elucidate the role of humidity in assembling interconnected networks for proton hopping. This study constructs a relationship between framework proton density and the corresponding proton conductivity in nonporous MOFs, and directly explains the role of both surface protons and external water in assembling the proton conduction pathways.
doi_str_mv 10.1021/acs.chemmater.8b02765
format article
fullrecord <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1486933</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c131966822</sourcerecordid><originalsourceid>FETCH-LOGICAL-a505t-a1837d72d79d5f0023b598ad7fdaf90f4c9c1d181eb587e204dc3ec2e96953463</originalsourceid><addsrcrecordid>eNqFkNFKwzAUhoMoOKePIATvO5O2aVrvZDonTCcyr0OWnNrONRlJpuxC8B18Q5_Els3denU45_zfD_-P0DklA0pieimVH6gKmkYGcIN8TmKesQPUoywmESMkPkQ9khc8SjnLjtGJ9wtCaIvmPfR5ayppFDRgArYlfnI2WIOH1ui1CvV7HTa4NvjRmpV1du3xAwS5_Pn6nrpXaWqFR0428GHdm7_Cswrws11CZ7S__1negPGdmzQaj9dNrdvlFB2VcunhbDf76GV0OxuOo8n07n54PYkkIyxEkuYJ1zzWvNCsbAMlc1bkUvNSy7IgZaoKRTXNKcxZziEmqVYJqBiKrGBJmiV9dLH1tT7Uwqs6gKqUNQZUEDTNsyJJWhHbipSz3jsoxcrVjXQbQYnoihZt0WJftNgV3XJ0y3XvhV0700b5h_kFWeSJSg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Enhancement of Proton Conductivity in Nonporous Metal–Organic Frameworks: The Role of Framework Proton Density and Humidity</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Pili, Simona ; Rought, Peter ; Kolokolov, Daniil I ; Lin, Longfei ; da Silva, Ivan ; Cheng, Yongqiang ; Marsh, Christopher ; Silverwood, Ian P ; García Sakai, Victoria ; Li, Ming ; Titman, Jeremy J ; Knight, Lyndsey ; Daemen, Luke L ; Ramirez-Cuesta, Anibal J ; Tang, Chiu C ; Stepanov, Alexander G ; Yang, Sihai ; Schröder, Martin</creator><creatorcontrib>Pili, Simona ; Rought, Peter ; Kolokolov, Daniil I ; Lin, Longfei ; da Silva, Ivan ; Cheng, Yongqiang ; Marsh, Christopher ; Silverwood, Ian P ; García Sakai, Victoria ; Li, Ming ; Titman, Jeremy J ; Knight, Lyndsey ; Daemen, Luke L ; Ramirez-Cuesta, Anibal J ; Tang, Chiu C ; Stepanov, Alexander G ; Yang, Sihai ; Schröder, Martin ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>Owing to their inherent pore structure, porous metal–organic frameworks (MOFs) can undergo postsynthetic modification, such as loading extra-framework proton carriers. However, strategies for improving the proton conductivity for nonporous MOFs are largely lacking, although increasing numbers of nonporous MOFs exhibit promising proton conductivities. Often, high humidity is required for nonporous MOFs to achieve high conductivities, but to date no clear mechanisms have been experimentally identified. Here we describe the new materials MFM-550­(M), [M­(HL1)], (H4L1 = biphenyl-4,4′-diphosphonic acid; M = La, Ce, Nd, Sm, Gd, Ho), MFM-550­(Ba), [Ba­(H2L1)], and MFM-555­(M), [M(HL2)], (H4L2 = benzene-1,4-diphosphonic acid; M = La, Ce, Nd, Sm, Gd, Ho), and report enhanced proton conductivities in these nonporous materials by (i) replacing the metal ion to one with a lower oxidation state, (ii) reducing the length of the organic ligand, and (iii) introducing additional acidic protons on the MOF surface. Increased framework proton density in these materials can lead to an enhancement in proton conductivity of up to 4 orders of magnitude. Additionally, we report a comprehensive investigation using in situ 2H NMR and neutron spectroscopy, coupled with molecular dynamic modeling, to elucidate the role of humidity in assembling interconnected networks for proton hopping. This study constructs a relationship between framework proton density and the corresponding proton conductivity in nonporous MOFs, and directly explains the role of both surface protons and external water in assembling the proton conduction pathways.</description><identifier>ISSN: 0897-4756</identifier><identifier>EISSN: 1520-5002</identifier><identifier>DOI: 10.1021/acs.chemmater.8b02765</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>MATERIALS SCIENCE</subject><ispartof>Chemistry of materials, 2018-11, Vol.30 (21), p.7593-7602</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a505t-a1837d72d79d5f0023b598ad7fdaf90f4c9c1d181eb587e204dc3ec2e96953463</citedby><cites>FETCH-LOGICAL-a505t-a1837d72d79d5f0023b598ad7fdaf90f4c9c1d181eb587e204dc3ec2e96953463</cites><orcidid>0000-0003-2754-5273 ; 0000-0002-1111-9272 ; 0000-0002-6977-1976 ; 0000-0003-1231-0068 ; 0000-0001-6992-0700 ; 0000000269771976 ; 0000000327545273 ; 0000000169920700 ; 0000000312310068 ; 0000000211119272</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1486933$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Pili, Simona</creatorcontrib><creatorcontrib>Rought, Peter</creatorcontrib><creatorcontrib>Kolokolov, Daniil I</creatorcontrib><creatorcontrib>Lin, Longfei</creatorcontrib><creatorcontrib>da Silva, Ivan</creatorcontrib><creatorcontrib>Cheng, Yongqiang</creatorcontrib><creatorcontrib>Marsh, Christopher</creatorcontrib><creatorcontrib>Silverwood, Ian P</creatorcontrib><creatorcontrib>García Sakai, Victoria</creatorcontrib><creatorcontrib>Li, Ming</creatorcontrib><creatorcontrib>Titman, Jeremy J</creatorcontrib><creatorcontrib>Knight, Lyndsey</creatorcontrib><creatorcontrib>Daemen, Luke L</creatorcontrib><creatorcontrib>Ramirez-Cuesta, Anibal J</creatorcontrib><creatorcontrib>Tang, Chiu C</creatorcontrib><creatorcontrib>Stepanov, Alexander G</creatorcontrib><creatorcontrib>Yang, Sihai</creatorcontrib><creatorcontrib>Schröder, Martin</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Enhancement of Proton Conductivity in Nonporous Metal–Organic Frameworks: The Role of Framework Proton Density and Humidity</title><title>Chemistry of materials</title><addtitle>Chem. Mater</addtitle><description>Owing to their inherent pore structure, porous metal–organic frameworks (MOFs) can undergo postsynthetic modification, such as loading extra-framework proton carriers. However, strategies for improving the proton conductivity for nonporous MOFs are largely lacking, although increasing numbers of nonporous MOFs exhibit promising proton conductivities. Often, high humidity is required for nonporous MOFs to achieve high conductivities, but to date no clear mechanisms have been experimentally identified. Here we describe the new materials MFM-550­(M), [M­(HL1)], (H4L1 = biphenyl-4,4′-diphosphonic acid; M = La, Ce, Nd, Sm, Gd, Ho), MFM-550­(Ba), [Ba­(H2L1)], and MFM-555­(M), [M(HL2)], (H4L2 = benzene-1,4-diphosphonic acid; M = La, Ce, Nd, Sm, Gd, Ho), and report enhanced proton conductivities in these nonporous materials by (i) replacing the metal ion to one with a lower oxidation state, (ii) reducing the length of the organic ligand, and (iii) introducing additional acidic protons on the MOF surface. Increased framework proton density in these materials can lead to an enhancement in proton conductivity of up to 4 orders of magnitude. Additionally, we report a comprehensive investigation using in situ 2H NMR and neutron spectroscopy, coupled with molecular dynamic modeling, to elucidate the role of humidity in assembling interconnected networks for proton hopping. This study constructs a relationship between framework proton density and the corresponding proton conductivity in nonporous MOFs, and directly explains the role of both surface protons and external water in assembling the proton conduction pathways.</description><subject>MATERIALS SCIENCE</subject><issn>0897-4756</issn><issn>1520-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkNFKwzAUhoMoOKePIATvO5O2aVrvZDonTCcyr0OWnNrONRlJpuxC8B18Q5_Els3denU45_zfD_-P0DklA0pieimVH6gKmkYGcIN8TmKesQPUoywmESMkPkQ9khc8SjnLjtGJ9wtCaIvmPfR5ayppFDRgArYlfnI2WIOH1ui1CvV7HTa4NvjRmpV1du3xAwS5_Pn6nrpXaWqFR0428GHdm7_Cswrws11CZ7S__1negPGdmzQaj9dNrdvlFB2VcunhbDf76GV0OxuOo8n07n54PYkkIyxEkuYJ1zzWvNCsbAMlc1bkUvNSy7IgZaoKRTXNKcxZziEmqVYJqBiKrGBJmiV9dLH1tT7Uwqs6gKqUNQZUEDTNsyJJWhHbipSz3jsoxcrVjXQbQYnoihZt0WJftNgV3XJ0y3XvhV0700b5h_kFWeSJSg</recordid><startdate>20181113</startdate><enddate>20181113</enddate><creator>Pili, Simona</creator><creator>Rought, Peter</creator><creator>Kolokolov, Daniil I</creator><creator>Lin, Longfei</creator><creator>da Silva, Ivan</creator><creator>Cheng, Yongqiang</creator><creator>Marsh, Christopher</creator><creator>Silverwood, Ian P</creator><creator>García Sakai, Victoria</creator><creator>Li, Ming</creator><creator>Titman, Jeremy J</creator><creator>Knight, Lyndsey</creator><creator>Daemen, Luke L</creator><creator>Ramirez-Cuesta, Anibal J</creator><creator>Tang, Chiu C</creator><creator>Stepanov, Alexander G</creator><creator>Yang, Sihai</creator><creator>Schröder, Martin</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-2754-5273</orcidid><orcidid>https://orcid.org/0000-0002-1111-9272</orcidid><orcidid>https://orcid.org/0000-0002-6977-1976</orcidid><orcidid>https://orcid.org/0000-0003-1231-0068</orcidid><orcidid>https://orcid.org/0000-0001-6992-0700</orcidid><orcidid>https://orcid.org/0000000269771976</orcidid><orcidid>https://orcid.org/0000000327545273</orcidid><orcidid>https://orcid.org/0000000169920700</orcidid><orcidid>https://orcid.org/0000000312310068</orcidid><orcidid>https://orcid.org/0000000211119272</orcidid></search><sort><creationdate>20181113</creationdate><title>Enhancement of Proton Conductivity in Nonporous Metal–Organic Frameworks: The Role of Framework Proton Density and Humidity</title><author>Pili, Simona ; Rought, Peter ; Kolokolov, Daniil I ; Lin, Longfei ; da Silva, Ivan ; Cheng, Yongqiang ; Marsh, Christopher ; Silverwood, Ian P ; García Sakai, Victoria ; Li, Ming ; Titman, Jeremy J ; Knight, Lyndsey ; Daemen, Luke L ; Ramirez-Cuesta, Anibal J ; Tang, Chiu C ; Stepanov, Alexander G ; Yang, Sihai ; Schröder, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a505t-a1837d72d79d5f0023b598ad7fdaf90f4c9c1d181eb587e204dc3ec2e96953463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>MATERIALS SCIENCE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pili, Simona</creatorcontrib><creatorcontrib>Rought, Peter</creatorcontrib><creatorcontrib>Kolokolov, Daniil I</creatorcontrib><creatorcontrib>Lin, Longfei</creatorcontrib><creatorcontrib>da Silva, Ivan</creatorcontrib><creatorcontrib>Cheng, Yongqiang</creatorcontrib><creatorcontrib>Marsh, Christopher</creatorcontrib><creatorcontrib>Silverwood, Ian P</creatorcontrib><creatorcontrib>García Sakai, Victoria</creatorcontrib><creatorcontrib>Li, Ming</creatorcontrib><creatorcontrib>Titman, Jeremy J</creatorcontrib><creatorcontrib>Knight, Lyndsey</creatorcontrib><creatorcontrib>Daemen, Luke L</creatorcontrib><creatorcontrib>Ramirez-Cuesta, Anibal J</creatorcontrib><creatorcontrib>Tang, Chiu C</creatorcontrib><creatorcontrib>Stepanov, Alexander G</creatorcontrib><creatorcontrib>Yang, Sihai</creatorcontrib><creatorcontrib>Schröder, Martin</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Chemistry of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pili, Simona</au><au>Rought, Peter</au><au>Kolokolov, Daniil I</au><au>Lin, Longfei</au><au>da Silva, Ivan</au><au>Cheng, Yongqiang</au><au>Marsh, Christopher</au><au>Silverwood, Ian P</au><au>García Sakai, Victoria</au><au>Li, Ming</au><au>Titman, Jeremy J</au><au>Knight, Lyndsey</au><au>Daemen, Luke L</au><au>Ramirez-Cuesta, Anibal J</au><au>Tang, Chiu C</au><au>Stepanov, Alexander G</au><au>Yang, Sihai</au><au>Schröder, Martin</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancement of Proton Conductivity in Nonporous Metal–Organic Frameworks: The Role of Framework Proton Density and Humidity</atitle><jtitle>Chemistry of materials</jtitle><addtitle>Chem. Mater</addtitle><date>2018-11-13</date><risdate>2018</risdate><volume>30</volume><issue>21</issue><spage>7593</spage><epage>7602</epage><pages>7593-7602</pages><issn>0897-4756</issn><eissn>1520-5002</eissn><abstract>Owing to their inherent pore structure, porous metal–organic frameworks (MOFs) can undergo postsynthetic modification, such as loading extra-framework proton carriers. However, strategies for improving the proton conductivity for nonporous MOFs are largely lacking, although increasing numbers of nonporous MOFs exhibit promising proton conductivities. Often, high humidity is required for nonporous MOFs to achieve high conductivities, but to date no clear mechanisms have been experimentally identified. Here we describe the new materials MFM-550­(M), [M­(HL1)], (H4L1 = biphenyl-4,4′-diphosphonic acid; M = La, Ce, Nd, Sm, Gd, Ho), MFM-550­(Ba), [Ba­(H2L1)], and MFM-555­(M), [M(HL2)], (H4L2 = benzene-1,4-diphosphonic acid; M = La, Ce, Nd, Sm, Gd, Ho), and report enhanced proton conductivities in these nonporous materials by (i) replacing the metal ion to one with a lower oxidation state, (ii) reducing the length of the organic ligand, and (iii) introducing additional acidic protons on the MOF surface. Increased framework proton density in these materials can lead to an enhancement in proton conductivity of up to 4 orders of magnitude. Additionally, we report a comprehensive investigation using in situ 2H NMR and neutron spectroscopy, coupled with molecular dynamic modeling, to elucidate the role of humidity in assembling interconnected networks for proton hopping. This study constructs a relationship between framework proton density and the corresponding proton conductivity in nonporous MOFs, and directly explains the role of both surface protons and external water in assembling the proton conduction pathways.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acs.chemmater.8b02765</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-2754-5273</orcidid><orcidid>https://orcid.org/0000-0002-1111-9272</orcidid><orcidid>https://orcid.org/0000-0002-6977-1976</orcidid><orcidid>https://orcid.org/0000-0003-1231-0068</orcidid><orcidid>https://orcid.org/0000-0001-6992-0700</orcidid><orcidid>https://orcid.org/0000000269771976</orcidid><orcidid>https://orcid.org/0000000327545273</orcidid><orcidid>https://orcid.org/0000000169920700</orcidid><orcidid>https://orcid.org/0000000312310068</orcidid><orcidid>https://orcid.org/0000000211119272</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0897-4756
ispartof Chemistry of materials, 2018-11, Vol.30 (21), p.7593-7602
issn 0897-4756
1520-5002
language eng
recordid cdi_osti_scitechconnect_1486933
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects MATERIALS SCIENCE
title Enhancement of Proton Conductivity in Nonporous Metal–Organic Frameworks: The Role of Framework Proton Density and Humidity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T08%3A11%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancement%20of%20Proton%20Conductivity%20in%20Nonporous%20Metal%E2%80%93Organic%20Frameworks:%20The%20Role%20of%20Framework%20Proton%20Density%20and%20Humidity&rft.jtitle=Chemistry%20of%20materials&rft.au=Pili,%20Simona&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2018-11-13&rft.volume=30&rft.issue=21&rft.spage=7593&rft.epage=7602&rft.pages=7593-7602&rft.issn=0897-4756&rft.eissn=1520-5002&rft_id=info:doi/10.1021/acs.chemmater.8b02765&rft_dat=%3Cacs_osti_%3Ec131966822%3C/acs_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a505t-a1837d72d79d5f0023b598ad7fdaf90f4c9c1d181eb587e204dc3ec2e96953463%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true