Loading…
Enhancement of Proton Conductivity in Nonporous Metal–Organic Frameworks: The Role of Framework Proton Density and Humidity
Owing to their inherent pore structure, porous metal–organic frameworks (MOFs) can undergo postsynthetic modification, such as loading extra-framework proton carriers. However, strategies for improving the proton conductivity for nonporous MOFs are largely lacking, although increasing numbers of non...
Saved in:
Published in: | Chemistry of materials 2018-11, Vol.30 (21), p.7593-7602 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a505t-a1837d72d79d5f0023b598ad7fdaf90f4c9c1d181eb587e204dc3ec2e96953463 |
---|---|
cites | cdi_FETCH-LOGICAL-a505t-a1837d72d79d5f0023b598ad7fdaf90f4c9c1d181eb587e204dc3ec2e96953463 |
container_end_page | 7602 |
container_issue | 21 |
container_start_page | 7593 |
container_title | Chemistry of materials |
container_volume | 30 |
creator | Pili, Simona Rought, Peter Kolokolov, Daniil I Lin, Longfei da Silva, Ivan Cheng, Yongqiang Marsh, Christopher Silverwood, Ian P García Sakai, Victoria Li, Ming Titman, Jeremy J Knight, Lyndsey Daemen, Luke L Ramirez-Cuesta, Anibal J Tang, Chiu C Stepanov, Alexander G Yang, Sihai Schröder, Martin |
description | Owing to their inherent pore structure, porous metal–organic frameworks (MOFs) can undergo postsynthetic modification, such as loading extra-framework proton carriers. However, strategies for improving the proton conductivity for nonporous MOFs are largely lacking, although increasing numbers of nonporous MOFs exhibit promising proton conductivities. Often, high humidity is required for nonporous MOFs to achieve high conductivities, but to date no clear mechanisms have been experimentally identified. Here we describe the new materials MFM-550(M), [M(HL1)], (H4L1 = biphenyl-4,4′-diphosphonic acid; M = La, Ce, Nd, Sm, Gd, Ho), MFM-550(Ba), [Ba(H2L1)], and MFM-555(M), [M(HL2)], (H4L2 = benzene-1,4-diphosphonic acid; M = La, Ce, Nd, Sm, Gd, Ho), and report enhanced proton conductivities in these nonporous materials by (i) replacing the metal ion to one with a lower oxidation state, (ii) reducing the length of the organic ligand, and (iii) introducing additional acidic protons on the MOF surface. Increased framework proton density in these materials can lead to an enhancement in proton conductivity of up to 4 orders of magnitude. Additionally, we report a comprehensive investigation using in situ 2H NMR and neutron spectroscopy, coupled with molecular dynamic modeling, to elucidate the role of humidity in assembling interconnected networks for proton hopping. This study constructs a relationship between framework proton density and the corresponding proton conductivity in nonporous MOFs, and directly explains the role of both surface protons and external water in assembling the proton conduction pathways. |
doi_str_mv | 10.1021/acs.chemmater.8b02765 |
format | article |
fullrecord | <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1486933</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c131966822</sourcerecordid><originalsourceid>FETCH-LOGICAL-a505t-a1837d72d79d5f0023b598ad7fdaf90f4c9c1d181eb587e204dc3ec2e96953463</originalsourceid><addsrcrecordid>eNqFkNFKwzAUhoMoOKePIATvO5O2aVrvZDonTCcyr0OWnNrONRlJpuxC8B18Q5_Els3denU45_zfD_-P0DklA0pieimVH6gKmkYGcIN8TmKesQPUoywmESMkPkQ9khc8SjnLjtGJ9wtCaIvmPfR5ayppFDRgArYlfnI2WIOH1ui1CvV7HTa4NvjRmpV1du3xAwS5_Pn6nrpXaWqFR0428GHdm7_Cswrws11CZ7S__1negPGdmzQaj9dNrdvlFB2VcunhbDf76GV0OxuOo8n07n54PYkkIyxEkuYJ1zzWvNCsbAMlc1bkUvNSy7IgZaoKRTXNKcxZziEmqVYJqBiKrGBJmiV9dLH1tT7Uwqs6gKqUNQZUEDTNsyJJWhHbipSz3jsoxcrVjXQbQYnoihZt0WJftNgV3XJ0y3XvhV0700b5h_kFWeSJSg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Enhancement of Proton Conductivity in Nonporous Metal–Organic Frameworks: The Role of Framework Proton Density and Humidity</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Pili, Simona ; Rought, Peter ; Kolokolov, Daniil I ; Lin, Longfei ; da Silva, Ivan ; Cheng, Yongqiang ; Marsh, Christopher ; Silverwood, Ian P ; García Sakai, Victoria ; Li, Ming ; Titman, Jeremy J ; Knight, Lyndsey ; Daemen, Luke L ; Ramirez-Cuesta, Anibal J ; Tang, Chiu C ; Stepanov, Alexander G ; Yang, Sihai ; Schröder, Martin</creator><creatorcontrib>Pili, Simona ; Rought, Peter ; Kolokolov, Daniil I ; Lin, Longfei ; da Silva, Ivan ; Cheng, Yongqiang ; Marsh, Christopher ; Silverwood, Ian P ; García Sakai, Victoria ; Li, Ming ; Titman, Jeremy J ; Knight, Lyndsey ; Daemen, Luke L ; Ramirez-Cuesta, Anibal J ; Tang, Chiu C ; Stepanov, Alexander G ; Yang, Sihai ; Schröder, Martin ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>Owing to their inherent pore structure, porous metal–organic frameworks (MOFs) can undergo postsynthetic modification, such as loading extra-framework proton carriers. However, strategies for improving the proton conductivity for nonporous MOFs are largely lacking, although increasing numbers of nonporous MOFs exhibit promising proton conductivities. Often, high humidity is required for nonporous MOFs to achieve high conductivities, but to date no clear mechanisms have been experimentally identified. Here we describe the new materials MFM-550(M), [M(HL1)], (H4L1 = biphenyl-4,4′-diphosphonic acid; M = La, Ce, Nd, Sm, Gd, Ho), MFM-550(Ba), [Ba(H2L1)], and MFM-555(M), [M(HL2)], (H4L2 = benzene-1,4-diphosphonic acid; M = La, Ce, Nd, Sm, Gd, Ho), and report enhanced proton conductivities in these nonporous materials by (i) replacing the metal ion to one with a lower oxidation state, (ii) reducing the length of the organic ligand, and (iii) introducing additional acidic protons on the MOF surface. Increased framework proton density in these materials can lead to an enhancement in proton conductivity of up to 4 orders of magnitude. Additionally, we report a comprehensive investigation using in situ 2H NMR and neutron spectroscopy, coupled with molecular dynamic modeling, to elucidate the role of humidity in assembling interconnected networks for proton hopping. This study constructs a relationship between framework proton density and the corresponding proton conductivity in nonporous MOFs, and directly explains the role of both surface protons and external water in assembling the proton conduction pathways.</description><identifier>ISSN: 0897-4756</identifier><identifier>EISSN: 1520-5002</identifier><identifier>DOI: 10.1021/acs.chemmater.8b02765</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>MATERIALS SCIENCE</subject><ispartof>Chemistry of materials, 2018-11, Vol.30 (21), p.7593-7602</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a505t-a1837d72d79d5f0023b598ad7fdaf90f4c9c1d181eb587e204dc3ec2e96953463</citedby><cites>FETCH-LOGICAL-a505t-a1837d72d79d5f0023b598ad7fdaf90f4c9c1d181eb587e204dc3ec2e96953463</cites><orcidid>0000-0003-2754-5273 ; 0000-0002-1111-9272 ; 0000-0002-6977-1976 ; 0000-0003-1231-0068 ; 0000-0001-6992-0700 ; 0000000269771976 ; 0000000327545273 ; 0000000169920700 ; 0000000312310068 ; 0000000211119272</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1486933$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Pili, Simona</creatorcontrib><creatorcontrib>Rought, Peter</creatorcontrib><creatorcontrib>Kolokolov, Daniil I</creatorcontrib><creatorcontrib>Lin, Longfei</creatorcontrib><creatorcontrib>da Silva, Ivan</creatorcontrib><creatorcontrib>Cheng, Yongqiang</creatorcontrib><creatorcontrib>Marsh, Christopher</creatorcontrib><creatorcontrib>Silverwood, Ian P</creatorcontrib><creatorcontrib>García Sakai, Victoria</creatorcontrib><creatorcontrib>Li, Ming</creatorcontrib><creatorcontrib>Titman, Jeremy J</creatorcontrib><creatorcontrib>Knight, Lyndsey</creatorcontrib><creatorcontrib>Daemen, Luke L</creatorcontrib><creatorcontrib>Ramirez-Cuesta, Anibal J</creatorcontrib><creatorcontrib>Tang, Chiu C</creatorcontrib><creatorcontrib>Stepanov, Alexander G</creatorcontrib><creatorcontrib>Yang, Sihai</creatorcontrib><creatorcontrib>Schröder, Martin</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Enhancement of Proton Conductivity in Nonporous Metal–Organic Frameworks: The Role of Framework Proton Density and Humidity</title><title>Chemistry of materials</title><addtitle>Chem. Mater</addtitle><description>Owing to their inherent pore structure, porous metal–organic frameworks (MOFs) can undergo postsynthetic modification, such as loading extra-framework proton carriers. However, strategies for improving the proton conductivity for nonporous MOFs are largely lacking, although increasing numbers of nonporous MOFs exhibit promising proton conductivities. Often, high humidity is required for nonporous MOFs to achieve high conductivities, but to date no clear mechanisms have been experimentally identified. Here we describe the new materials MFM-550(M), [M(HL1)], (H4L1 = biphenyl-4,4′-diphosphonic acid; M = La, Ce, Nd, Sm, Gd, Ho), MFM-550(Ba), [Ba(H2L1)], and MFM-555(M), [M(HL2)], (H4L2 = benzene-1,4-diphosphonic acid; M = La, Ce, Nd, Sm, Gd, Ho), and report enhanced proton conductivities in these nonporous materials by (i) replacing the metal ion to one with a lower oxidation state, (ii) reducing the length of the organic ligand, and (iii) introducing additional acidic protons on the MOF surface. Increased framework proton density in these materials can lead to an enhancement in proton conductivity of up to 4 orders of magnitude. Additionally, we report a comprehensive investigation using in situ 2H NMR and neutron spectroscopy, coupled with molecular dynamic modeling, to elucidate the role of humidity in assembling interconnected networks for proton hopping. This study constructs a relationship between framework proton density and the corresponding proton conductivity in nonporous MOFs, and directly explains the role of both surface protons and external water in assembling the proton conduction pathways.</description><subject>MATERIALS SCIENCE</subject><issn>0897-4756</issn><issn>1520-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkNFKwzAUhoMoOKePIATvO5O2aVrvZDonTCcyr0OWnNrONRlJpuxC8B18Q5_Els3denU45_zfD_-P0DklA0pieimVH6gKmkYGcIN8TmKesQPUoywmESMkPkQ9khc8SjnLjtGJ9wtCaIvmPfR5ayppFDRgArYlfnI2WIOH1ui1CvV7HTa4NvjRmpV1du3xAwS5_Pn6nrpXaWqFR0428GHdm7_Cswrws11CZ7S__1negPGdmzQaj9dNrdvlFB2VcunhbDf76GV0OxuOo8n07n54PYkkIyxEkuYJ1zzWvNCsbAMlc1bkUvNSy7IgZaoKRTXNKcxZziEmqVYJqBiKrGBJmiV9dLH1tT7Uwqs6gKqUNQZUEDTNsyJJWhHbipSz3jsoxcrVjXQbQYnoihZt0WJftNgV3XJ0y3XvhV0700b5h_kFWeSJSg</recordid><startdate>20181113</startdate><enddate>20181113</enddate><creator>Pili, Simona</creator><creator>Rought, Peter</creator><creator>Kolokolov, Daniil I</creator><creator>Lin, Longfei</creator><creator>da Silva, Ivan</creator><creator>Cheng, Yongqiang</creator><creator>Marsh, Christopher</creator><creator>Silverwood, Ian P</creator><creator>García Sakai, Victoria</creator><creator>Li, Ming</creator><creator>Titman, Jeremy J</creator><creator>Knight, Lyndsey</creator><creator>Daemen, Luke L</creator><creator>Ramirez-Cuesta, Anibal J</creator><creator>Tang, Chiu C</creator><creator>Stepanov, Alexander G</creator><creator>Yang, Sihai</creator><creator>Schröder, Martin</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-2754-5273</orcidid><orcidid>https://orcid.org/0000-0002-1111-9272</orcidid><orcidid>https://orcid.org/0000-0002-6977-1976</orcidid><orcidid>https://orcid.org/0000-0003-1231-0068</orcidid><orcidid>https://orcid.org/0000-0001-6992-0700</orcidid><orcidid>https://orcid.org/0000000269771976</orcidid><orcidid>https://orcid.org/0000000327545273</orcidid><orcidid>https://orcid.org/0000000169920700</orcidid><orcidid>https://orcid.org/0000000312310068</orcidid><orcidid>https://orcid.org/0000000211119272</orcidid></search><sort><creationdate>20181113</creationdate><title>Enhancement of Proton Conductivity in Nonporous Metal–Organic Frameworks: The Role of Framework Proton Density and Humidity</title><author>Pili, Simona ; Rought, Peter ; Kolokolov, Daniil I ; Lin, Longfei ; da Silva, Ivan ; Cheng, Yongqiang ; Marsh, Christopher ; Silverwood, Ian P ; García Sakai, Victoria ; Li, Ming ; Titman, Jeremy J ; Knight, Lyndsey ; Daemen, Luke L ; Ramirez-Cuesta, Anibal J ; Tang, Chiu C ; Stepanov, Alexander G ; Yang, Sihai ; Schröder, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a505t-a1837d72d79d5f0023b598ad7fdaf90f4c9c1d181eb587e204dc3ec2e96953463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>MATERIALS SCIENCE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pili, Simona</creatorcontrib><creatorcontrib>Rought, Peter</creatorcontrib><creatorcontrib>Kolokolov, Daniil I</creatorcontrib><creatorcontrib>Lin, Longfei</creatorcontrib><creatorcontrib>da Silva, Ivan</creatorcontrib><creatorcontrib>Cheng, Yongqiang</creatorcontrib><creatorcontrib>Marsh, Christopher</creatorcontrib><creatorcontrib>Silverwood, Ian P</creatorcontrib><creatorcontrib>García Sakai, Victoria</creatorcontrib><creatorcontrib>Li, Ming</creatorcontrib><creatorcontrib>Titman, Jeremy J</creatorcontrib><creatorcontrib>Knight, Lyndsey</creatorcontrib><creatorcontrib>Daemen, Luke L</creatorcontrib><creatorcontrib>Ramirez-Cuesta, Anibal J</creatorcontrib><creatorcontrib>Tang, Chiu C</creatorcontrib><creatorcontrib>Stepanov, Alexander G</creatorcontrib><creatorcontrib>Yang, Sihai</creatorcontrib><creatorcontrib>Schröder, Martin</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Chemistry of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pili, Simona</au><au>Rought, Peter</au><au>Kolokolov, Daniil I</au><au>Lin, Longfei</au><au>da Silva, Ivan</au><au>Cheng, Yongqiang</au><au>Marsh, Christopher</au><au>Silverwood, Ian P</au><au>García Sakai, Victoria</au><au>Li, Ming</au><au>Titman, Jeremy J</au><au>Knight, Lyndsey</au><au>Daemen, Luke L</au><au>Ramirez-Cuesta, Anibal J</au><au>Tang, Chiu C</au><au>Stepanov, Alexander G</au><au>Yang, Sihai</au><au>Schröder, Martin</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancement of Proton Conductivity in Nonporous Metal–Organic Frameworks: The Role of Framework Proton Density and Humidity</atitle><jtitle>Chemistry of materials</jtitle><addtitle>Chem. Mater</addtitle><date>2018-11-13</date><risdate>2018</risdate><volume>30</volume><issue>21</issue><spage>7593</spage><epage>7602</epage><pages>7593-7602</pages><issn>0897-4756</issn><eissn>1520-5002</eissn><abstract>Owing to their inherent pore structure, porous metal–organic frameworks (MOFs) can undergo postsynthetic modification, such as loading extra-framework proton carriers. However, strategies for improving the proton conductivity for nonporous MOFs are largely lacking, although increasing numbers of nonporous MOFs exhibit promising proton conductivities. Often, high humidity is required for nonporous MOFs to achieve high conductivities, but to date no clear mechanisms have been experimentally identified. Here we describe the new materials MFM-550(M), [M(HL1)], (H4L1 = biphenyl-4,4′-diphosphonic acid; M = La, Ce, Nd, Sm, Gd, Ho), MFM-550(Ba), [Ba(H2L1)], and MFM-555(M), [M(HL2)], (H4L2 = benzene-1,4-diphosphonic acid; M = La, Ce, Nd, Sm, Gd, Ho), and report enhanced proton conductivities in these nonporous materials by (i) replacing the metal ion to one with a lower oxidation state, (ii) reducing the length of the organic ligand, and (iii) introducing additional acidic protons on the MOF surface. Increased framework proton density in these materials can lead to an enhancement in proton conductivity of up to 4 orders of magnitude. Additionally, we report a comprehensive investigation using in situ 2H NMR and neutron spectroscopy, coupled with molecular dynamic modeling, to elucidate the role of humidity in assembling interconnected networks for proton hopping. This study constructs a relationship between framework proton density and the corresponding proton conductivity in nonporous MOFs, and directly explains the role of both surface protons and external water in assembling the proton conduction pathways.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acs.chemmater.8b02765</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-2754-5273</orcidid><orcidid>https://orcid.org/0000-0002-1111-9272</orcidid><orcidid>https://orcid.org/0000-0002-6977-1976</orcidid><orcidid>https://orcid.org/0000-0003-1231-0068</orcidid><orcidid>https://orcid.org/0000-0001-6992-0700</orcidid><orcidid>https://orcid.org/0000000269771976</orcidid><orcidid>https://orcid.org/0000000327545273</orcidid><orcidid>https://orcid.org/0000000169920700</orcidid><orcidid>https://orcid.org/0000000312310068</orcidid><orcidid>https://orcid.org/0000000211119272</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0897-4756 |
ispartof | Chemistry of materials, 2018-11, Vol.30 (21), p.7593-7602 |
issn | 0897-4756 1520-5002 |
language | eng |
recordid | cdi_osti_scitechconnect_1486933 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | MATERIALS SCIENCE |
title | Enhancement of Proton Conductivity in Nonporous Metal–Organic Frameworks: The Role of Framework Proton Density and Humidity |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T08%3A11%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancement%20of%20Proton%20Conductivity%20in%20Nonporous%20Metal%E2%80%93Organic%20Frameworks:%20The%20Role%20of%20Framework%20Proton%20Density%20and%20Humidity&rft.jtitle=Chemistry%20of%20materials&rft.au=Pili,%20Simona&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2018-11-13&rft.volume=30&rft.issue=21&rft.spage=7593&rft.epage=7602&rft.pages=7593-7602&rft.issn=0897-4756&rft.eissn=1520-5002&rft_id=info:doi/10.1021/acs.chemmater.8b02765&rft_dat=%3Cacs_osti_%3Ec131966822%3C/acs_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a505t-a1837d72d79d5f0023b598ad7fdaf90f4c9c1d181eb587e204dc3ec2e96953463%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |