Loading…
On Disrupting the Na+‑Ion/Vacancy Ordering in P2-Type Sodium–Manganese–Nickel Oxide Cathodes for Na+‑Ion Batteries
An investigation of the electrochemical and structural properties of layered P2–Na0.62Mn0.75Ni0.25O2 is presented. The effect of changing the Mn/Ni ratio (3:1) from what is found in Na0.67Mn0.67Ni0.33O2 (2:1) and consequently the introduction of a third metal center (Mn3+) was investigated. X-ray po...
Saved in:
Published in: | Journal of physical chemistry. C 2018-10, Vol.122 (41), p.23251-23260 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a415t-86d002486e56f46ec073438bd62213db6272c8932619343f9d99d557e5c5dbe53 |
---|---|
cites | cdi_FETCH-LOGICAL-a415t-86d002486e56f46ec073438bd62213db6272c8932619343f9d99d557e5c5dbe53 |
container_end_page | 23260 |
container_issue | 41 |
container_start_page | 23251 |
container_title | Journal of physical chemistry. C |
container_volume | 122 |
creator | Gutierrez, Arturo Dose, Wesley M Borkiewicz, Olaf Guo, Fangmin Avdeev, Maxim Kim, Soojeong Fister, Timothy T Ren, Yang Bareño, Javier Johnson, Christopher S |
description | An investigation of the electrochemical and structural properties of layered P2–Na0.62Mn0.75Ni0.25O2 is presented. The effect of changing the Mn/Ni ratio (3:1) from what is found in Na0.67Mn0.67Ni0.33O2 (2:1) and consequently the introduction of a third metal center (Mn3+) was investigated. X-ray powder diffraction (in situ and ex situ) revealed the lack of Na+-ion/vacancy ordering at the relevant sodium contents (x = 0.33, 0.5, and 0.67). Mn3+ in Na0.62Mn0.75Ni0.25O2 introduces defects into the Ni–Mn interplane charge order that in turn disrupts the ordering within the Na-plane. The material underwent P2–O2 and P2–P2′ phase transitions at high (4.2 V) and low (∼1.85 V) voltages, respectively. The material was tested at several different voltage ranges to understand the effect of the phase transitions on the capacity retention. Interestingly, the inclusion of both phase transitions demonstrated comparable cycling performance to when both phase transitions were excluded. Last, excellent rate performance was demonstrated between 4.3 and 1.5 V with a specific capacity of 120 mA h/g delivered at 500 mA/g current density. |
doi_str_mv | 10.1021/acs.jpcc.8b05537 |
format | article |
fullrecord | <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1487115</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c47107964</sourcerecordid><originalsourceid>FETCH-LOGICAL-a415t-86d002486e56f46ec073438bd62213db6272c8932619343f9d99d557e5c5dbe53</originalsourceid><addsrcrecordid>eNp1kMtOwzAURCMEEqWwZ2mxhbR2HOexhPKqVBokCtvIsW9al9aJbFeirPoLiD_sl5BQBCtWd6Q7M9IczzsluEdwQPpc2N68FqKXFJgxGu95HZLSwI9DxvZ_dRgfekfWzjFmFBPa8d4zja6VNavaKT1FbgZozM-3m49hpfsvXHAt1igzEkz7Vho9Bv5kXQN6qqRaLbebzweup1yDhUaPlXiFBcrelAQ04G5WSbCorMxfKbrizjVtYI-9g5IvLJz83K73fHszGdz7o-xuOLgc-TwkzPlJJDEOwiQCFpVhBALHNKRJIaMgIFQWURAHImnmRc3GkJapTFPJWAxMMFkAo13vbNdbWadyK5QDMROV1iBcTsIkJqQ14Z1JmMpaA2VeG7XkZp0TnLeA8wZw3gLOfwA3kYtd5PtTrYxuVvxv_wK8EoGr</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On Disrupting the Na+‑Ion/Vacancy Ordering in P2-Type Sodium–Manganese–Nickel Oxide Cathodes for Na+‑Ion Batteries</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Gutierrez, Arturo ; Dose, Wesley M ; Borkiewicz, Olaf ; Guo, Fangmin ; Avdeev, Maxim ; Kim, Soojeong ; Fister, Timothy T ; Ren, Yang ; Bareño, Javier ; Johnson, Christopher S</creator><creatorcontrib>Gutierrez, Arturo ; Dose, Wesley M ; Borkiewicz, Olaf ; Guo, Fangmin ; Avdeev, Maxim ; Kim, Soojeong ; Fister, Timothy T ; Ren, Yang ; Bareño, Javier ; Johnson, Christopher S ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>An investigation of the electrochemical and structural properties of layered P2–Na0.62Mn0.75Ni0.25O2 is presented. The effect of changing the Mn/Ni ratio (3:1) from what is found in Na0.67Mn0.67Ni0.33O2 (2:1) and consequently the introduction of a third metal center (Mn3+) was investigated. X-ray powder diffraction (in situ and ex situ) revealed the lack of Na+-ion/vacancy ordering at the relevant sodium contents (x = 0.33, 0.5, and 0.67). Mn3+ in Na0.62Mn0.75Ni0.25O2 introduces defects into the Ni–Mn interplane charge order that in turn disrupts the ordering within the Na-plane. The material underwent P2–O2 and P2–P2′ phase transitions at high (4.2 V) and low (∼1.85 V) voltages, respectively. The material was tested at several different voltage ranges to understand the effect of the phase transitions on the capacity retention. Interestingly, the inclusion of both phase transitions demonstrated comparable cycling performance to when both phase transitions were excluded. Last, excellent rate performance was demonstrated between 4.3 and 1.5 V with a specific capacity of 120 mA h/g delivered at 500 mA/g current density.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.8b05537</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>ENERGY STORAGE ; Sodium battery</subject><ispartof>Journal of physical chemistry. C, 2018-10, Vol.122 (41), p.23251-23260</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a415t-86d002486e56f46ec073438bd62213db6272c8932619343f9d99d557e5c5dbe53</citedby><cites>FETCH-LOGICAL-a415t-86d002486e56f46ec073438bd62213db6272c8932619343f9d99d557e5c5dbe53</cites><orcidid>0000-0003-4357-6889 ; 0000-0001-6537-6170 ; 0000-0003-1230-9278 ; 0000-0002-2899-3089 ; 0000000165376170 ; 0000000343576889 ; 0000000312309278 ; 0000000228993089</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1487115$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Gutierrez, Arturo</creatorcontrib><creatorcontrib>Dose, Wesley M</creatorcontrib><creatorcontrib>Borkiewicz, Olaf</creatorcontrib><creatorcontrib>Guo, Fangmin</creatorcontrib><creatorcontrib>Avdeev, Maxim</creatorcontrib><creatorcontrib>Kim, Soojeong</creatorcontrib><creatorcontrib>Fister, Timothy T</creatorcontrib><creatorcontrib>Ren, Yang</creatorcontrib><creatorcontrib>Bareño, Javier</creatorcontrib><creatorcontrib>Johnson, Christopher S</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>On Disrupting the Na+‑Ion/Vacancy Ordering in P2-Type Sodium–Manganese–Nickel Oxide Cathodes for Na+‑Ion Batteries</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>An investigation of the electrochemical and structural properties of layered P2–Na0.62Mn0.75Ni0.25O2 is presented. The effect of changing the Mn/Ni ratio (3:1) from what is found in Na0.67Mn0.67Ni0.33O2 (2:1) and consequently the introduction of a third metal center (Mn3+) was investigated. X-ray powder diffraction (in situ and ex situ) revealed the lack of Na+-ion/vacancy ordering at the relevant sodium contents (x = 0.33, 0.5, and 0.67). Mn3+ in Na0.62Mn0.75Ni0.25O2 introduces defects into the Ni–Mn interplane charge order that in turn disrupts the ordering within the Na-plane. The material underwent P2–O2 and P2–P2′ phase transitions at high (4.2 V) and low (∼1.85 V) voltages, respectively. The material was tested at several different voltage ranges to understand the effect of the phase transitions on the capacity retention. Interestingly, the inclusion of both phase transitions demonstrated comparable cycling performance to when both phase transitions were excluded. Last, excellent rate performance was demonstrated between 4.3 and 1.5 V with a specific capacity of 120 mA h/g delivered at 500 mA/g current density.</description><subject>ENERGY STORAGE</subject><subject>Sodium battery</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAURCMEEqWwZ2mxhbR2HOexhPKqVBokCtvIsW9al9aJbFeirPoLiD_sl5BQBCtWd6Q7M9IczzsluEdwQPpc2N68FqKXFJgxGu95HZLSwI9DxvZ_dRgfekfWzjFmFBPa8d4zja6VNavaKT1FbgZozM-3m49hpfsvXHAt1igzEkz7Vho9Bv5kXQN6qqRaLbebzweup1yDhUaPlXiFBcrelAQ04G5WSbCorMxfKbrizjVtYI-9g5IvLJz83K73fHszGdz7o-xuOLgc-TwkzPlJJDEOwiQCFpVhBALHNKRJIaMgIFQWURAHImnmRc3GkJapTFPJWAxMMFkAo13vbNdbWadyK5QDMROV1iBcTsIkJqQ14Z1JmMpaA2VeG7XkZp0TnLeA8wZw3gLOfwA3kYtd5PtTrYxuVvxv_wK8EoGr</recordid><startdate>20181018</startdate><enddate>20181018</enddate><creator>Gutierrez, Arturo</creator><creator>Dose, Wesley M</creator><creator>Borkiewicz, Olaf</creator><creator>Guo, Fangmin</creator><creator>Avdeev, Maxim</creator><creator>Kim, Soojeong</creator><creator>Fister, Timothy T</creator><creator>Ren, Yang</creator><creator>Bareño, Javier</creator><creator>Johnson, Christopher S</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-4357-6889</orcidid><orcidid>https://orcid.org/0000-0001-6537-6170</orcidid><orcidid>https://orcid.org/0000-0003-1230-9278</orcidid><orcidid>https://orcid.org/0000-0002-2899-3089</orcidid><orcidid>https://orcid.org/0000000165376170</orcidid><orcidid>https://orcid.org/0000000343576889</orcidid><orcidid>https://orcid.org/0000000312309278</orcidid><orcidid>https://orcid.org/0000000228993089</orcidid></search><sort><creationdate>20181018</creationdate><title>On Disrupting the Na+‑Ion/Vacancy Ordering in P2-Type Sodium–Manganese–Nickel Oxide Cathodes for Na+‑Ion Batteries</title><author>Gutierrez, Arturo ; Dose, Wesley M ; Borkiewicz, Olaf ; Guo, Fangmin ; Avdeev, Maxim ; Kim, Soojeong ; Fister, Timothy T ; Ren, Yang ; Bareño, Javier ; Johnson, Christopher S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a415t-86d002486e56f46ec073438bd62213db6272c8932619343f9d99d557e5c5dbe53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>ENERGY STORAGE</topic><topic>Sodium battery</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gutierrez, Arturo</creatorcontrib><creatorcontrib>Dose, Wesley M</creatorcontrib><creatorcontrib>Borkiewicz, Olaf</creatorcontrib><creatorcontrib>Guo, Fangmin</creatorcontrib><creatorcontrib>Avdeev, Maxim</creatorcontrib><creatorcontrib>Kim, Soojeong</creatorcontrib><creatorcontrib>Fister, Timothy T</creatorcontrib><creatorcontrib>Ren, Yang</creatorcontrib><creatorcontrib>Bareño, Javier</creatorcontrib><creatorcontrib>Johnson, Christopher S</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gutierrez, Arturo</au><au>Dose, Wesley M</au><au>Borkiewicz, Olaf</au><au>Guo, Fangmin</au><au>Avdeev, Maxim</au><au>Kim, Soojeong</au><au>Fister, Timothy T</au><au>Ren, Yang</au><au>Bareño, Javier</au><au>Johnson, Christopher S</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Disrupting the Na+‑Ion/Vacancy Ordering in P2-Type Sodium–Manganese–Nickel Oxide Cathodes for Na+‑Ion Batteries</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2018-10-18</date><risdate>2018</risdate><volume>122</volume><issue>41</issue><spage>23251</spage><epage>23260</epage><pages>23251-23260</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>An investigation of the electrochemical and structural properties of layered P2–Na0.62Mn0.75Ni0.25O2 is presented. The effect of changing the Mn/Ni ratio (3:1) from what is found in Na0.67Mn0.67Ni0.33O2 (2:1) and consequently the introduction of a third metal center (Mn3+) was investigated. X-ray powder diffraction (in situ and ex situ) revealed the lack of Na+-ion/vacancy ordering at the relevant sodium contents (x = 0.33, 0.5, and 0.67). Mn3+ in Na0.62Mn0.75Ni0.25O2 introduces defects into the Ni–Mn interplane charge order that in turn disrupts the ordering within the Na-plane. The material underwent P2–O2 and P2–P2′ phase transitions at high (4.2 V) and low (∼1.85 V) voltages, respectively. The material was tested at several different voltage ranges to understand the effect of the phase transitions on the capacity retention. Interestingly, the inclusion of both phase transitions demonstrated comparable cycling performance to when both phase transitions were excluded. Last, excellent rate performance was demonstrated between 4.3 and 1.5 V with a specific capacity of 120 mA h/g delivered at 500 mA/g current density.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.8b05537</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-4357-6889</orcidid><orcidid>https://orcid.org/0000-0001-6537-6170</orcidid><orcidid>https://orcid.org/0000-0003-1230-9278</orcidid><orcidid>https://orcid.org/0000-0002-2899-3089</orcidid><orcidid>https://orcid.org/0000000165376170</orcidid><orcidid>https://orcid.org/0000000343576889</orcidid><orcidid>https://orcid.org/0000000312309278</orcidid><orcidid>https://orcid.org/0000000228993089</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-7447 |
ispartof | Journal of physical chemistry. C, 2018-10, Vol.122 (41), p.23251-23260 |
issn | 1932-7447 1932-7455 |
language | eng |
recordid | cdi_osti_scitechconnect_1487115 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | ENERGY STORAGE Sodium battery |
title | On Disrupting the Na+‑Ion/Vacancy Ordering in P2-Type Sodium–Manganese–Nickel Oxide Cathodes for Na+‑Ion Batteries |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T17%3A53%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Disrupting%20the%20Na+%E2%80%91Ion/Vacancy%20Ordering%20in%20P2-Type%20Sodium%E2%80%93Manganese%E2%80%93Nickel%20Oxide%20Cathodes%20for%20Na+%E2%80%91Ion%20Batteries&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Gutierrez,%20Arturo&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2018-10-18&rft.volume=122&rft.issue=41&rft.spage=23251&rft.epage=23260&rft.pages=23251-23260&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.8b05537&rft_dat=%3Cacs_osti_%3Ec47107964%3C/acs_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a415t-86d002486e56f46ec073438bd62213db6272c8932619343f9d99d557e5c5dbe53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |