Loading…

Mitigating the initial capacity loss and improving the cycling stability of silicon monoxide using Li5FeO4

Silicon monoxide (SiO) is a promising next-generation anode material for lithium-ion batteries due to the high capacity it offers. However, such material also exhibits a large initial capacity loss which results in significant loss of Li inventory to irreversible reactions in a full cell. To mitigat...

Full description

Saved in:
Bibliographic Details
Published in:Journal of power sources 2018-10, Vol.400 (C), p.549-555
Main Authors: Zhang, Linghong, Dose, Wesley M., Vu, Anh D., Johnson, Christopher S., Lu, Wenquan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c426t-634f63feccc9029f3afd718512a171217dd82ca47014fa79b3f0b1fe974077593
cites cdi_FETCH-LOGICAL-c426t-634f63feccc9029f3afd718512a171217dd82ca47014fa79b3f0b1fe974077593
container_end_page 555
container_issue C
container_start_page 549
container_title Journal of power sources
container_volume 400
creator Zhang, Linghong
Dose, Wesley M.
Vu, Anh D.
Johnson, Christopher S.
Lu, Wenquan
description Silicon monoxide (SiO) is a promising next-generation anode material for lithium-ion batteries due to the high capacity it offers. However, such material also exhibits a large initial capacity loss which results in significant loss of Li inventory to irreversible reactions in a full cell. To mitigate the Li inventory loss due to the initial capacity loss of the SiO anode, a prelithiation reagent, Li5FeO4, is added to the LiNi0.5Co0.2Mn0.3O2 (NCM523) cathode, which is then paired with a SiO anode for electrochemical evaluation. The addition of Li5FeO4 leads to a significant 22% improvement in lithium utilization in NCM523. Furthermore, the capacity retention of the full cell increased from 90.94% to 98.92% for 50 cycles. We then further studied the impact of Li5FeO4 addition on the energy density of the cell via modeling. In order to maximize the energy density improvement, thicker electrodes need to be utilized. •Li5FeO4 can compensate the initial capacity loss of silicon monoxide anode.•Li5FeO4 can improve the full cell energy density and capacity retention.•Energy density improvement using Li5FeO4 can be maximized with thicker electrodes.
doi_str_mv 10.1016/j.jpowsour.2018.08.061
format article
fullrecord <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1487117</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378775318309200</els_id><sourcerecordid>S0378775318309200</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-634f63feccc9029f3afd718512a171217dd82ca47014fa79b3f0b1fe974077593</originalsourceid><addsrcrecordid>eNqFkF1LwzAUhoMoOKd_QYL3rTlN27R3ynAqVHaj1yFLky2la0qSTffvTZm7Fg6cc-A9H8-L0D2QFAiUj13ajfbb271LMwJVSmKUcIFmUDGaZKwoLtGMUFYljBX0Gt143xFCABiZoe7DBLMRwQwbHLYKmyH2osdSjEKacMS99R6LocVmNzp7OOvkUfZT7YNYm34SWo19rKQd8M4O9se0Cu_9pGlMsVSr_BZdadF7dfeX5-hr-fK5eEua1ev74rlJZJ6VISlprkuqlZSyJlmtqdAtg6qATACDDFjbVpkUOSOQa8HqNdVkDVrVLCcRsKZz9HDaa30w3EcKJbfxrUHJwCGvWCSPovIkki4COqX56MxOuCMHwidbecfPtvLJVk5ilBAHn06DKiIcjHLTBTVI1Ro3HWit-W_FL37phhw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Mitigating the initial capacity loss and improving the cycling stability of silicon monoxide using Li5FeO4</title><source>ScienceDirect Freedom Collection</source><creator>Zhang, Linghong ; Dose, Wesley M. ; Vu, Anh D. ; Johnson, Christopher S. ; Lu, Wenquan</creator><creatorcontrib>Zhang, Linghong ; Dose, Wesley M. ; Vu, Anh D. ; Johnson, Christopher S. ; Lu, Wenquan ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>Silicon monoxide (SiO) is a promising next-generation anode material for lithium-ion batteries due to the high capacity it offers. However, such material also exhibits a large initial capacity loss which results in significant loss of Li inventory to irreversible reactions in a full cell. To mitigate the Li inventory loss due to the initial capacity loss of the SiO anode, a prelithiation reagent, Li5FeO4, is added to the LiNi0.5Co0.2Mn0.3O2 (NCM523) cathode, which is then paired with a SiO anode for electrochemical evaluation. The addition of Li5FeO4 leads to a significant 22% improvement in lithium utilization in NCM523. Furthermore, the capacity retention of the full cell increased from 90.94% to 98.92% for 50 cycles. We then further studied the impact of Li5FeO4 addition on the energy density of the cell via modeling. In order to maximize the energy density improvement, thicker electrodes need to be utilized. •Li5FeO4 can compensate the initial capacity loss of silicon monoxide anode.•Li5FeO4 can improve the full cell energy density and capacity retention.•Energy density improvement using Li5FeO4 can be maximized with thicker electrodes.</description><identifier>ISSN: 0378-7753</identifier><identifier>EISSN: 1873-2755</identifier><identifier>DOI: 10.1016/j.jpowsour.2018.08.061</identifier><language>eng</language><publisher>United States: Elsevier B.V</publisher><subject>ENERGY STORAGE ; Li5FeO4 ; Lithium-ion batteries ; Prelithiation ; Silicon monoxide</subject><ispartof>Journal of power sources, 2018-10, Vol.400 (C), p.549-555</ispartof><rights>2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-634f63feccc9029f3afd718512a171217dd82ca47014fa79b3f0b1fe974077593</citedby><cites>FETCH-LOGICAL-c426t-634f63feccc9029f3afd718512a171217dd82ca47014fa79b3f0b1fe974077593</cites><orcidid>0000-0001-8655-8256 ; 0000-0003-4357-6889 ; 0000-0001-9705-2920 ; 0000000343576889 ; 0000000197052920 ; 0000000186558256</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1487117$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Linghong</creatorcontrib><creatorcontrib>Dose, Wesley M.</creatorcontrib><creatorcontrib>Vu, Anh D.</creatorcontrib><creatorcontrib>Johnson, Christopher S.</creatorcontrib><creatorcontrib>Lu, Wenquan</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Mitigating the initial capacity loss and improving the cycling stability of silicon monoxide using Li5FeO4</title><title>Journal of power sources</title><description>Silicon monoxide (SiO) is a promising next-generation anode material for lithium-ion batteries due to the high capacity it offers. However, such material also exhibits a large initial capacity loss which results in significant loss of Li inventory to irreversible reactions in a full cell. To mitigate the Li inventory loss due to the initial capacity loss of the SiO anode, a prelithiation reagent, Li5FeO4, is added to the LiNi0.5Co0.2Mn0.3O2 (NCM523) cathode, which is then paired with a SiO anode for electrochemical evaluation. The addition of Li5FeO4 leads to a significant 22% improvement in lithium utilization in NCM523. Furthermore, the capacity retention of the full cell increased from 90.94% to 98.92% for 50 cycles. We then further studied the impact of Li5FeO4 addition on the energy density of the cell via modeling. In order to maximize the energy density improvement, thicker electrodes need to be utilized. •Li5FeO4 can compensate the initial capacity loss of silicon monoxide anode.•Li5FeO4 can improve the full cell energy density and capacity retention.•Energy density improvement using Li5FeO4 can be maximized with thicker electrodes.</description><subject>ENERGY STORAGE</subject><subject>Li5FeO4</subject><subject>Lithium-ion batteries</subject><subject>Prelithiation</subject><subject>Silicon monoxide</subject><issn>0378-7753</issn><issn>1873-2755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkF1LwzAUhoMoOKd_QYL3rTlN27R3ynAqVHaj1yFLky2la0qSTffvTZm7Fg6cc-A9H8-L0D2QFAiUj13ajfbb271LMwJVSmKUcIFmUDGaZKwoLtGMUFYljBX0Gt143xFCABiZoe7DBLMRwQwbHLYKmyH2osdSjEKacMS99R6LocVmNzp7OOvkUfZT7YNYm34SWo19rKQd8M4O9se0Cu_9pGlMsVSr_BZdadF7dfeX5-hr-fK5eEua1ev74rlJZJ6VISlprkuqlZSyJlmtqdAtg6qATACDDFjbVpkUOSOQa8HqNdVkDVrVLCcRsKZz9HDaa30w3EcKJbfxrUHJwCGvWCSPovIkki4COqX56MxOuCMHwidbecfPtvLJVk5ilBAHn06DKiIcjHLTBTVI1Ro3HWit-W_FL37phhw</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Zhang, Linghong</creator><creator>Dose, Wesley M.</creator><creator>Vu, Anh D.</creator><creator>Johnson, Christopher S.</creator><creator>Lu, Wenquan</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-8655-8256</orcidid><orcidid>https://orcid.org/0000-0003-4357-6889</orcidid><orcidid>https://orcid.org/0000-0001-9705-2920</orcidid><orcidid>https://orcid.org/0000000343576889</orcidid><orcidid>https://orcid.org/0000000197052920</orcidid><orcidid>https://orcid.org/0000000186558256</orcidid></search><sort><creationdate>20181001</creationdate><title>Mitigating the initial capacity loss and improving the cycling stability of silicon monoxide using Li5FeO4</title><author>Zhang, Linghong ; Dose, Wesley M. ; Vu, Anh D. ; Johnson, Christopher S. ; Lu, Wenquan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-634f63feccc9029f3afd718512a171217dd82ca47014fa79b3f0b1fe974077593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>ENERGY STORAGE</topic><topic>Li5FeO4</topic><topic>Lithium-ion batteries</topic><topic>Prelithiation</topic><topic>Silicon monoxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Linghong</creatorcontrib><creatorcontrib>Dose, Wesley M.</creatorcontrib><creatorcontrib>Vu, Anh D.</creatorcontrib><creatorcontrib>Johnson, Christopher S.</creatorcontrib><creatorcontrib>Lu, Wenquan</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of power sources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Linghong</au><au>Dose, Wesley M.</au><au>Vu, Anh D.</au><au>Johnson, Christopher S.</au><au>Lu, Wenquan</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mitigating the initial capacity loss and improving the cycling stability of silicon monoxide using Li5FeO4</atitle><jtitle>Journal of power sources</jtitle><date>2018-10-01</date><risdate>2018</risdate><volume>400</volume><issue>C</issue><spage>549</spage><epage>555</epage><pages>549-555</pages><issn>0378-7753</issn><eissn>1873-2755</eissn><abstract>Silicon monoxide (SiO) is a promising next-generation anode material for lithium-ion batteries due to the high capacity it offers. However, such material also exhibits a large initial capacity loss which results in significant loss of Li inventory to irreversible reactions in a full cell. To mitigate the Li inventory loss due to the initial capacity loss of the SiO anode, a prelithiation reagent, Li5FeO4, is added to the LiNi0.5Co0.2Mn0.3O2 (NCM523) cathode, which is then paired with a SiO anode for electrochemical evaluation. The addition of Li5FeO4 leads to a significant 22% improvement in lithium utilization in NCM523. Furthermore, the capacity retention of the full cell increased from 90.94% to 98.92% for 50 cycles. We then further studied the impact of Li5FeO4 addition on the energy density of the cell via modeling. In order to maximize the energy density improvement, thicker electrodes need to be utilized. •Li5FeO4 can compensate the initial capacity loss of silicon monoxide anode.•Li5FeO4 can improve the full cell energy density and capacity retention.•Energy density improvement using Li5FeO4 can be maximized with thicker electrodes.</abstract><cop>United States</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jpowsour.2018.08.061</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-8655-8256</orcidid><orcidid>https://orcid.org/0000-0003-4357-6889</orcidid><orcidid>https://orcid.org/0000-0001-9705-2920</orcidid><orcidid>https://orcid.org/0000000343576889</orcidid><orcidid>https://orcid.org/0000000197052920</orcidid><orcidid>https://orcid.org/0000000186558256</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0378-7753
ispartof Journal of power sources, 2018-10, Vol.400 (C), p.549-555
issn 0378-7753
1873-2755
language eng
recordid cdi_osti_scitechconnect_1487117
source ScienceDirect Freedom Collection
subjects ENERGY STORAGE
Li5FeO4
Lithium-ion batteries
Prelithiation
Silicon monoxide
title Mitigating the initial capacity loss and improving the cycling stability of silicon monoxide using Li5FeO4
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T22%3A42%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mitigating%20the%20initial%20capacity%20loss%20and%20improving%20the%20cycling%20stability%20of%20silicon%20monoxide%20using%20Li5FeO4&rft.jtitle=Journal%20of%20power%20sources&rft.au=Zhang,%20Linghong&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2018-10-01&rft.volume=400&rft.issue=C&rft.spage=549&rft.epage=555&rft.pages=549-555&rft.issn=0378-7753&rft.eissn=1873-2755&rft_id=info:doi/10.1016/j.jpowsour.2018.08.061&rft_dat=%3Celsevier_osti_%3ES0378775318309200%3C/elsevier_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c426t-634f63feccc9029f3afd718512a171217dd82ca47014fa79b3f0b1fe974077593%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true