Loading…

A physics-based mesoscale phase-field model for predicting the uptake kinetics of radionuclides in hierarchical nuclear wasteform materials

[Display omitted] Multiscale, hierarchical, porous materials are promising nuclear wasteform materials with potential for efficiently adsorbing and sequestering radionuclides. However, fundamental understanding of such complex micro- and meso-structures on radionuclide diffusion and uptake kinetics...

Full description

Saved in:
Bibliographic Details
Published in:Computational materials science 2019-03, Vol.159 (C), p.103-109
Main Authors: Li, Y.L., Zeidman, B.D., Hu, S.Y., Henager, C.H., Besmann, T.M., Grandjean, A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c391t-193b1d012783cce643296d3c1dc61e598e0ba398a3b060f918d4d296c8ec12bb3
cites cdi_FETCH-LOGICAL-c391t-193b1d012783cce643296d3c1dc61e598e0ba398a3b060f918d4d296c8ec12bb3
container_end_page 109
container_issue C
container_start_page 103
container_title Computational materials science
container_volume 159
creator Li, Y.L.
Zeidman, B.D.
Hu, S.Y.
Henager, C.H.
Besmann, T.M.
Grandjean, A.
description [Display omitted] Multiscale, hierarchical, porous materials are promising nuclear wasteform materials with potential for efficiently adsorbing and sequestering radionuclides. However, fundamental understanding of such complex micro- and meso-structures on radionuclide diffusion and uptake kinetics is lacking, which is essential for designing advanced nuclear wasteform materials. In this work we develop a microstructural-dependent diffusion model that accounts for three-dimensional (3D) microstructural features, including heterogeneous thermodynamic and kinetic properties, to predict radionuclide uptake kinetics in complex porous structures. Na+ and Sr2+ ionic exchange in LTA zeolite multiscale materials in batch tests is taken as a model system to demonstrate the model and its application to hierarchical materials with multiscale porosity. It is found that the reduction of ionic mobility associated with chemistry, structure, and/or phase changes has more profound impact on the uptake kinetics in a large 3D porous particle than that in a small one. Uptake kinetics in large particles are limited by two diffusion processes: bulk diffusion and surface layer transport. Decreasing particle size and increasing mesoscale pore volume fraction changes the uptake kinetics from two diffusion processes to a single process and dramatically increases the uptake kinetics. Predicted uptake kinetics and the effect of microstructures on the effective capacity of radionuclides and uptake efficiency are consistent with results observed in Na+/Sr2+ exchange experiments. The results demonstrate that the developed model should be adaptable to transport problems in other hierarchical material systems.
doi_str_mv 10.1016/j.commatsci.2018.11.041
format article
fullrecord <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1490317</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927025618307699</els_id><sourcerecordid>S0927025618307699</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-193b1d012783cce643296d3c1dc61e598e0ba398a3b060f918d4d296c8ec12bb3</originalsourceid><addsrcrecordid>eNqFkM2O1DAQhC0EEsPCM2BxT3DHs4l9HK34k1biAmfLaXeIZ5N4ZHtB-wy8NB0N4sqppXJVtfsT4i2oFhT0788tpnX1tWBsOwWmBWjVEZ6JA5jBNsooeC4OynZDo7rb_qV4VcpZcdKa7iB-n-RlfioRSzP6QkGuVFJBvxDrLDRTpIXVFGiRU8rykilErHH7IetM8vFS_QPJh7hR5RKZJpl9iGl7xCUGKjJuco6UfcY5cq3cH8hn-cuXSly4Sv475eiX8lq8mHjQm7_zRnz_-OHb3efm_uunL3en-wa1hdqA1SMEBd1gNCL1R93ZPmiEgD3QrTWkRq-t8XpUvZosmHAMbEFDCN046hvx7tqbSo2OuVXCGdO2EVYHR6s0DGwaribMqZRMk7vkuPr85EC5Hbw7u3_g3Q7eATgGz8nTNUl8w0--fV9BGzK3vG8IKf634w9yL5P_</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A physics-based mesoscale phase-field model for predicting the uptake kinetics of radionuclides in hierarchical nuclear wasteform materials</title><source>ScienceDirect Journals</source><creator>Li, Y.L. ; Zeidman, B.D. ; Hu, S.Y. ; Henager, C.H. ; Besmann, T.M. ; Grandjean, A.</creator><creatorcontrib>Li, Y.L. ; Zeidman, B.D. ; Hu, S.Y. ; Henager, C.H. ; Besmann, T.M. ; Grandjean, A. ; Energy Frontier Research Centers (EFRC) (United States). Center for Hierarchical Waste Form Materials (CHWM) ; Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><description>[Display omitted] Multiscale, hierarchical, porous materials are promising nuclear wasteform materials with potential for efficiently adsorbing and sequestering radionuclides. However, fundamental understanding of such complex micro- and meso-structures on radionuclide diffusion and uptake kinetics is lacking, which is essential for designing advanced nuclear wasteform materials. In this work we develop a microstructural-dependent diffusion model that accounts for three-dimensional (3D) microstructural features, including heterogeneous thermodynamic and kinetic properties, to predict radionuclide uptake kinetics in complex porous structures. Na+ and Sr2+ ionic exchange in LTA zeolite multiscale materials in batch tests is taken as a model system to demonstrate the model and its application to hierarchical materials with multiscale porosity. It is found that the reduction of ionic mobility associated with chemistry, structure, and/or phase changes has more profound impact on the uptake kinetics in a large 3D porous particle than that in a small one. Uptake kinetics in large particles are limited by two diffusion processes: bulk diffusion and surface layer transport. Decreasing particle size and increasing mesoscale pore volume fraction changes the uptake kinetics from two diffusion processes to a single process and dramatically increases the uptake kinetics. Predicted uptake kinetics and the effect of microstructures on the effective capacity of radionuclides and uptake efficiency are consistent with results observed in Na+/Sr2+ exchange experiments. The results demonstrate that the developed model should be adaptable to transport problems in other hierarchical material systems.</description><identifier>ISSN: 0927-0256</identifier><identifier>EISSN: 1879-0801</identifier><identifier>DOI: 10.1016/j.commatsci.2018.11.041</identifier><language>eng</language><publisher>United States: Elsevier B.V</publisher><subject>Hierarchical zeolite ; Ion exchange ; Nuclear wasteforms ; Phase-field model ; Phase-field model, ionic exchange, porous silica, porous materials, radioactive waste storage, Hierarchically Porous Materials ; Porous solids</subject><ispartof>Computational materials science, 2019-03, Vol.159 (C), p.103-109</ispartof><rights>2018 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-193b1d012783cce643296d3c1dc61e598e0ba398a3b060f918d4d296c8ec12bb3</citedby><cites>FETCH-LOGICAL-c391t-193b1d012783cce643296d3c1dc61e598e0ba398a3b060f918d4d296c8ec12bb3</cites><orcidid>0000-0002-6253-7693 ; 0000000262537693</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1490317$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Y.L.</creatorcontrib><creatorcontrib>Zeidman, B.D.</creatorcontrib><creatorcontrib>Hu, S.Y.</creatorcontrib><creatorcontrib>Henager, C.H.</creatorcontrib><creatorcontrib>Besmann, T.M.</creatorcontrib><creatorcontrib>Grandjean, A.</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Center for Hierarchical Waste Form Materials (CHWM)</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><title>A physics-based mesoscale phase-field model for predicting the uptake kinetics of radionuclides in hierarchical nuclear wasteform materials</title><title>Computational materials science</title><description>[Display omitted] Multiscale, hierarchical, porous materials are promising nuclear wasteform materials with potential for efficiently adsorbing and sequestering radionuclides. However, fundamental understanding of such complex micro- and meso-structures on radionuclide diffusion and uptake kinetics is lacking, which is essential for designing advanced nuclear wasteform materials. In this work we develop a microstructural-dependent diffusion model that accounts for three-dimensional (3D) microstructural features, including heterogeneous thermodynamic and kinetic properties, to predict radionuclide uptake kinetics in complex porous structures. Na+ and Sr2+ ionic exchange in LTA zeolite multiscale materials in batch tests is taken as a model system to demonstrate the model and its application to hierarchical materials with multiscale porosity. It is found that the reduction of ionic mobility associated with chemistry, structure, and/or phase changes has more profound impact on the uptake kinetics in a large 3D porous particle than that in a small one. Uptake kinetics in large particles are limited by two diffusion processes: bulk diffusion and surface layer transport. Decreasing particle size and increasing mesoscale pore volume fraction changes the uptake kinetics from two diffusion processes to a single process and dramatically increases the uptake kinetics. Predicted uptake kinetics and the effect of microstructures on the effective capacity of radionuclides and uptake efficiency are consistent with results observed in Na+/Sr2+ exchange experiments. The results demonstrate that the developed model should be adaptable to transport problems in other hierarchical material systems.</description><subject>Hierarchical zeolite</subject><subject>Ion exchange</subject><subject>Nuclear wasteforms</subject><subject>Phase-field model</subject><subject>Phase-field model, ionic exchange, porous silica, porous materials, radioactive waste storage, Hierarchically Porous Materials</subject><subject>Porous solids</subject><issn>0927-0256</issn><issn>1879-0801</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkM2O1DAQhC0EEsPCM2BxT3DHs4l9HK34k1biAmfLaXeIZ5N4ZHtB-wy8NB0N4sqppXJVtfsT4i2oFhT0788tpnX1tWBsOwWmBWjVEZ6JA5jBNsooeC4OynZDo7rb_qV4VcpZcdKa7iB-n-RlfioRSzP6QkGuVFJBvxDrLDRTpIXVFGiRU8rykilErHH7IetM8vFS_QPJh7hR5RKZJpl9iGl7xCUGKjJuco6UfcY5cq3cH8hn-cuXSly4Sv475eiX8lq8mHjQm7_zRnz_-OHb3efm_uunL3en-wa1hdqA1SMEBd1gNCL1R93ZPmiEgD3QrTWkRq-t8XpUvZosmHAMbEFDCN046hvx7tqbSo2OuVXCGdO2EVYHR6s0DGwaribMqZRMk7vkuPr85EC5Hbw7u3_g3Q7eATgGz8nTNUl8w0--fV9BGzK3vG8IKf634w9yL5P_</recordid><startdate>201903</startdate><enddate>201903</enddate><creator>Li, Y.L.</creator><creator>Zeidman, B.D.</creator><creator>Hu, S.Y.</creator><creator>Henager, C.H.</creator><creator>Besmann, T.M.</creator><creator>Grandjean, A.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-6253-7693</orcidid><orcidid>https://orcid.org/0000000262537693</orcidid></search><sort><creationdate>201903</creationdate><title>A physics-based mesoscale phase-field model for predicting the uptake kinetics of radionuclides in hierarchical nuclear wasteform materials</title><author>Li, Y.L. ; Zeidman, B.D. ; Hu, S.Y. ; Henager, C.H. ; Besmann, T.M. ; Grandjean, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-193b1d012783cce643296d3c1dc61e598e0ba398a3b060f918d4d296c8ec12bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Hierarchical zeolite</topic><topic>Ion exchange</topic><topic>Nuclear wasteforms</topic><topic>Phase-field model</topic><topic>Phase-field model, ionic exchange, porous silica, porous materials, radioactive waste storage, Hierarchically Porous Materials</topic><topic>Porous solids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Y.L.</creatorcontrib><creatorcontrib>Zeidman, B.D.</creatorcontrib><creatorcontrib>Hu, S.Y.</creatorcontrib><creatorcontrib>Henager, C.H.</creatorcontrib><creatorcontrib>Besmann, T.M.</creatorcontrib><creatorcontrib>Grandjean, A.</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Center for Hierarchical Waste Form Materials (CHWM)</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Computational materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Y.L.</au><au>Zeidman, B.D.</au><au>Hu, S.Y.</au><au>Henager, C.H.</au><au>Besmann, T.M.</au><au>Grandjean, A.</au><aucorp>Energy Frontier Research Centers (EFRC) (United States). Center for Hierarchical Waste Form Materials (CHWM)</aucorp><aucorp>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A physics-based mesoscale phase-field model for predicting the uptake kinetics of radionuclides in hierarchical nuclear wasteform materials</atitle><jtitle>Computational materials science</jtitle><date>2019-03</date><risdate>2019</risdate><volume>159</volume><issue>C</issue><spage>103</spage><epage>109</epage><pages>103-109</pages><issn>0927-0256</issn><eissn>1879-0801</eissn><abstract>[Display omitted] Multiscale, hierarchical, porous materials are promising nuclear wasteform materials with potential for efficiently adsorbing and sequestering radionuclides. However, fundamental understanding of such complex micro- and meso-structures on radionuclide diffusion and uptake kinetics is lacking, which is essential for designing advanced nuclear wasteform materials. In this work we develop a microstructural-dependent diffusion model that accounts for three-dimensional (3D) microstructural features, including heterogeneous thermodynamic and kinetic properties, to predict radionuclide uptake kinetics in complex porous structures. Na+ and Sr2+ ionic exchange in LTA zeolite multiscale materials in batch tests is taken as a model system to demonstrate the model and its application to hierarchical materials with multiscale porosity. It is found that the reduction of ionic mobility associated with chemistry, structure, and/or phase changes has more profound impact on the uptake kinetics in a large 3D porous particle than that in a small one. Uptake kinetics in large particles are limited by two diffusion processes: bulk diffusion and surface layer transport. Decreasing particle size and increasing mesoscale pore volume fraction changes the uptake kinetics from two diffusion processes to a single process and dramatically increases the uptake kinetics. Predicted uptake kinetics and the effect of microstructures on the effective capacity of radionuclides and uptake efficiency are consistent with results observed in Na+/Sr2+ exchange experiments. The results demonstrate that the developed model should be adaptable to transport problems in other hierarchical material systems.</abstract><cop>United States</cop><pub>Elsevier B.V</pub><doi>10.1016/j.commatsci.2018.11.041</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-6253-7693</orcidid><orcidid>https://orcid.org/0000000262537693</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0927-0256
ispartof Computational materials science, 2019-03, Vol.159 (C), p.103-109
issn 0927-0256
1879-0801
language eng
recordid cdi_osti_scitechconnect_1490317
source ScienceDirect Journals
subjects Hierarchical zeolite
Ion exchange
Nuclear wasteforms
Phase-field model
Phase-field model, ionic exchange, porous silica, porous materials, radioactive waste storage, Hierarchically Porous Materials
Porous solids
title A physics-based mesoscale phase-field model for predicting the uptake kinetics of radionuclides in hierarchical nuclear wasteform materials
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T06%3A20%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20physics-based%20mesoscale%20phase-field%20model%20for%20predicting%20the%20uptake%20kinetics%20of%20radionuclides%20in%20hierarchical%20nuclear%20wasteform%20materials&rft.jtitle=Computational%20materials%20science&rft.au=Li,%20Y.L.&rft.aucorp=Energy%20Frontier%20Research%20Centers%20(EFRC)%20(United%20States).%20Center%20for%20Hierarchical%20Waste%20Form%20Materials%20(CHWM)&rft.date=2019-03&rft.volume=159&rft.issue=C&rft.spage=103&rft.epage=109&rft.pages=103-109&rft.issn=0927-0256&rft.eissn=1879-0801&rft_id=info:doi/10.1016/j.commatsci.2018.11.041&rft_dat=%3Celsevier_osti_%3ES0927025618307699%3C/elsevier_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c391t-193b1d012783cce643296d3c1dc61e598e0ba398a3b060f918d4d296c8ec12bb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true