Loading…

Computing resonant modes of accelerator cavities by solving nonlinear eigenvalue problems via rational approximation

We present an efficient and reliable algorithm for solving a class of nonlinear eigenvalue problems arising from the modeling of particle accelerator cavities. The eigenvalue nonlinearity in these problems results from the use of waveguides to couple external power sources or to allow certain excite...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational physics 2018-12, Vol.374 (C), p.1031-1043
Main Authors: Van Beeumen, Roel, Marques, Osni, Ng, Esmond G., Yang, Chao, Bai, Zhaojun, Ge, Lixin, Kononenko, Oleksiy, Li, Zenghai, Ng, Cho-Kuen, Xiao, Liling
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c395t-b8097b309b2cfb992b106354eeae9ec6e8925729348592c7e1b3f43cf79b549d3
cites cdi_FETCH-LOGICAL-c395t-b8097b309b2cfb992b106354eeae9ec6e8925729348592c7e1b3f43cf79b549d3
container_end_page 1043
container_issue C
container_start_page 1031
container_title Journal of computational physics
container_volume 374
creator Van Beeumen, Roel
Marques, Osni
Ng, Esmond G.
Yang, Chao
Bai, Zhaojun
Ge, Lixin
Kononenko, Oleksiy
Li, Zenghai
Ng, Cho-Kuen
Xiao, Liling
description We present an efficient and reliable algorithm for solving a class of nonlinear eigenvalue problems arising from the modeling of particle accelerator cavities. The eigenvalue nonlinearity in these problems results from the use of waveguides to couple external power sources or to allow certain excited electromagnetic modes to exit the cavity. We use a rational approximation to reduce the nonlinear eigenvalue problem first to a rational eigenvalue problem. We then apply a special linearization procedure to turn the rational eigenvalue problem into a larger linear eigenvalue problem with the same eigenvalues, which can be solved by existing iterative methods. By using a compact scheme to represent both the linearized operator and the eigenvectors to be computed, we obtain a numerical method that only involves solving linear systems of equations of the same dimension as the original nonlinear eigenvalue problem. We refer to this method as a compact rational Krylov (CORK) method. We implemented the CORK method in the Omega3P module of the Advanced Computational Electromagnetic 3D Parallel (ACE3P) simulation suite and validated it by comparing the computed cavity resonant frequencies and damping Q factors of a small model problem to those obtained from a fitting procedure that uses frequency responses computed by another ACE3P module called S3P. We also used the CORK method to compute trapped modes damped in an ideal eight 9-cell SRF cavity cryomodule. This was the first time it was possible to compute these modes directly. The damping Q factors of the computed modes match well with those measured in experiments and the difference in resonant frequencies is within the range introduced by cavity imperfection. Therefore, the CORK method is an extremely valuable tool for computational cavity design.
doi_str_mv 10.1016/j.jcp.2018.08.017
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1490813</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999118305400</els_id><sourcerecordid>2132683847</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-b8097b309b2cfb992b106354eeae9ec6e8925729348592c7e1b3f43cf79b549d3</originalsourceid><addsrcrecordid>eNp9kctqHDEQRUVwIGMnH5CdiNc9Lkn9kMgqDHkYDN4kayFpqh01PVJH0jT230edydpQUFRxT3GLS8hHBnsGrL-b9pNb9hyY3EMtNrwhOwYKGj6w_orsADhrlFLsHbnOeQIA2bVyR8ohnpZz8eGJJswxmFDoKR4x0zhS4xzOmEyJiTqz-uLr3r7QHOd1I0IMsw9oEkX_hGE18xnpkqKd8ZTp6g2trK9HZ2qWun_2p3_ze_J2NHPGD__7Dfn17evPw4_m4fH7_eHLQ-OE6kpjJajBClCWu9EqxS2DXnQtokGFrkepeDdwJVrZKe4GZFaMrXDjoGzXqqO4IZ8ud2MuXmfnC7rfLoaArmjWKpBMVNHtRVQN_jljLnqK51Q9Z82Z4L0Ush2qil1ULsWcE456SfWb9KIZ6C0BPemagN4S0FCLbcznC4P1x9Vj2ixgcHj0aXNwjP4V-i9oV5Bk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2132683847</pqid></control><display><type>article</type><title>Computing resonant modes of accelerator cavities by solving nonlinear eigenvalue problems via rational approximation</title><source>ScienceDirect Journals</source><creator>Van Beeumen, Roel ; Marques, Osni ; Ng, Esmond G. ; Yang, Chao ; Bai, Zhaojun ; Ge, Lixin ; Kononenko, Oleksiy ; Li, Zenghai ; Ng, Cho-Kuen ; Xiao, Liling</creator><creatorcontrib>Van Beeumen, Roel ; Marques, Osni ; Ng, Esmond G. ; Yang, Chao ; Bai, Zhaojun ; Ge, Lixin ; Kononenko, Oleksiy ; Li, Zenghai ; Ng, Cho-Kuen ; Xiao, Liling ; SLAC National Accelerator Lab., Menlo Park, CA (United States) ; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><description>We present an efficient and reliable algorithm for solving a class of nonlinear eigenvalue problems arising from the modeling of particle accelerator cavities. The eigenvalue nonlinearity in these problems results from the use of waveguides to couple external power sources or to allow certain excited electromagnetic modes to exit the cavity. We use a rational approximation to reduce the nonlinear eigenvalue problem first to a rational eigenvalue problem. We then apply a special linearization procedure to turn the rational eigenvalue problem into a larger linear eigenvalue problem with the same eigenvalues, which can be solved by existing iterative methods. By using a compact scheme to represent both the linearized operator and the eigenvectors to be computed, we obtain a numerical method that only involves solving linear systems of equations of the same dimension as the original nonlinear eigenvalue problem. We refer to this method as a compact rational Krylov (CORK) method. We implemented the CORK method in the Omega3P module of the Advanced Computational Electromagnetic 3D Parallel (ACE3P) simulation suite and validated it by comparing the computed cavity resonant frequencies and damping Q factors of a small model problem to those obtained from a fitting procedure that uses frequency responses computed by another ACE3P module called S3P. We also used the CORK method to compute trapped modes damped in an ideal eight 9-cell SRF cavity cryomodule. This was the first time it was possible to compute these modes directly. The damping Q factors of the computed modes match well with those measured in experiments and the difference in resonant frequencies is within the range introduced by cavity imperfection. Therefore, the CORK method is an extremely valuable tool for computational cavity design.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2018.08.017</identifier><language>eng</language><publisher>Cambridge: Elsevier Inc</publisher><subject>Accelerator modeling ; Algorithms ; Approximation ; Computation ; Computational physics ; Computer simulation ; CORK method ; Damping ; Eigenvalues ; Eigenvectors ; Holes ; Iterative methods ; Linear systems ; Linearization ; Mathematical analysis ; Mathematical models ; MATHEMATICS AND COMPUTING ; Nonlinear eigenvalue problem ; Nonlinearity ; Numerical methods ; PARTICLE ACCELERATORS ; Power sources ; Q factors ; Resonant frequencies ; Software ; Waveguides</subject><ispartof>Journal of computational physics, 2018-12, Vol.374 (C), p.1031-1043</ispartof><rights>2018</rights><rights>Copyright Elsevier Science Ltd. Dec 1, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-b8097b309b2cfb992b106354eeae9ec6e8925729348592c7e1b3f43cf79b549d3</citedby><cites>FETCH-LOGICAL-c395t-b8097b309b2cfb992b106354eeae9ec6e8925729348592c7e1b3f43cf79b549d3</cites><orcidid>0000-0003-2276-1153 ; 0000000322761153</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,778,782,883,27907,27908</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1490813$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Van Beeumen, Roel</creatorcontrib><creatorcontrib>Marques, Osni</creatorcontrib><creatorcontrib>Ng, Esmond G.</creatorcontrib><creatorcontrib>Yang, Chao</creatorcontrib><creatorcontrib>Bai, Zhaojun</creatorcontrib><creatorcontrib>Ge, Lixin</creatorcontrib><creatorcontrib>Kononenko, Oleksiy</creatorcontrib><creatorcontrib>Li, Zenghai</creatorcontrib><creatorcontrib>Ng, Cho-Kuen</creatorcontrib><creatorcontrib>Xiao, Liling</creatorcontrib><creatorcontrib>SLAC National Accelerator Lab., Menlo Park, CA (United States)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Computing resonant modes of accelerator cavities by solving nonlinear eigenvalue problems via rational approximation</title><title>Journal of computational physics</title><description>We present an efficient and reliable algorithm for solving a class of nonlinear eigenvalue problems arising from the modeling of particle accelerator cavities. The eigenvalue nonlinearity in these problems results from the use of waveguides to couple external power sources or to allow certain excited electromagnetic modes to exit the cavity. We use a rational approximation to reduce the nonlinear eigenvalue problem first to a rational eigenvalue problem. We then apply a special linearization procedure to turn the rational eigenvalue problem into a larger linear eigenvalue problem with the same eigenvalues, which can be solved by existing iterative methods. By using a compact scheme to represent both the linearized operator and the eigenvectors to be computed, we obtain a numerical method that only involves solving linear systems of equations of the same dimension as the original nonlinear eigenvalue problem. We refer to this method as a compact rational Krylov (CORK) method. We implemented the CORK method in the Omega3P module of the Advanced Computational Electromagnetic 3D Parallel (ACE3P) simulation suite and validated it by comparing the computed cavity resonant frequencies and damping Q factors of a small model problem to those obtained from a fitting procedure that uses frequency responses computed by another ACE3P module called S3P. We also used the CORK method to compute trapped modes damped in an ideal eight 9-cell SRF cavity cryomodule. This was the first time it was possible to compute these modes directly. The damping Q factors of the computed modes match well with those measured in experiments and the difference in resonant frequencies is within the range introduced by cavity imperfection. Therefore, the CORK method is an extremely valuable tool for computational cavity design.</description><subject>Accelerator modeling</subject><subject>Algorithms</subject><subject>Approximation</subject><subject>Computation</subject><subject>Computational physics</subject><subject>Computer simulation</subject><subject>CORK method</subject><subject>Damping</subject><subject>Eigenvalues</subject><subject>Eigenvectors</subject><subject>Holes</subject><subject>Iterative methods</subject><subject>Linear systems</subject><subject>Linearization</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>MATHEMATICS AND COMPUTING</subject><subject>Nonlinear eigenvalue problem</subject><subject>Nonlinearity</subject><subject>Numerical methods</subject><subject>PARTICLE ACCELERATORS</subject><subject>Power sources</subject><subject>Q factors</subject><subject>Resonant frequencies</subject><subject>Software</subject><subject>Waveguides</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kctqHDEQRUVwIGMnH5CdiNc9Lkn9kMgqDHkYDN4kayFpqh01PVJH0jT230edydpQUFRxT3GLS8hHBnsGrL-b9pNb9hyY3EMtNrwhOwYKGj6w_orsADhrlFLsHbnOeQIA2bVyR8ohnpZz8eGJJswxmFDoKR4x0zhS4xzOmEyJiTqz-uLr3r7QHOd1I0IMsw9oEkX_hGE18xnpkqKd8ZTp6g2trK9HZ2qWun_2p3_ze_J2NHPGD__7Dfn17evPw4_m4fH7_eHLQ-OE6kpjJajBClCWu9EqxS2DXnQtokGFrkepeDdwJVrZKe4GZFaMrXDjoGzXqqO4IZ8ud2MuXmfnC7rfLoaArmjWKpBMVNHtRVQN_jljLnqK51Q9Z82Z4L0Ush2qil1ULsWcE456SfWb9KIZ6C0BPemagN4S0FCLbcznC4P1x9Vj2ixgcHj0aXNwjP4V-i9oV5Bk</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Van Beeumen, Roel</creator><creator>Marques, Osni</creator><creator>Ng, Esmond G.</creator><creator>Yang, Chao</creator><creator>Bai, Zhaojun</creator><creator>Ge, Lixin</creator><creator>Kononenko, Oleksiy</creator><creator>Li, Zenghai</creator><creator>Ng, Cho-Kuen</creator><creator>Xiao, Liling</creator><general>Elsevier Inc</general><general>Elsevier Science Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-2276-1153</orcidid><orcidid>https://orcid.org/0000000322761153</orcidid></search><sort><creationdate>20181201</creationdate><title>Computing resonant modes of accelerator cavities by solving nonlinear eigenvalue problems via rational approximation</title><author>Van Beeumen, Roel ; Marques, Osni ; Ng, Esmond G. ; Yang, Chao ; Bai, Zhaojun ; Ge, Lixin ; Kononenko, Oleksiy ; Li, Zenghai ; Ng, Cho-Kuen ; Xiao, Liling</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-b8097b309b2cfb992b106354eeae9ec6e8925729348592c7e1b3f43cf79b549d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Accelerator modeling</topic><topic>Algorithms</topic><topic>Approximation</topic><topic>Computation</topic><topic>Computational physics</topic><topic>Computer simulation</topic><topic>CORK method</topic><topic>Damping</topic><topic>Eigenvalues</topic><topic>Eigenvectors</topic><topic>Holes</topic><topic>Iterative methods</topic><topic>Linear systems</topic><topic>Linearization</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>MATHEMATICS AND COMPUTING</topic><topic>Nonlinear eigenvalue problem</topic><topic>Nonlinearity</topic><topic>Numerical methods</topic><topic>PARTICLE ACCELERATORS</topic><topic>Power sources</topic><topic>Q factors</topic><topic>Resonant frequencies</topic><topic>Software</topic><topic>Waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Van Beeumen, Roel</creatorcontrib><creatorcontrib>Marques, Osni</creatorcontrib><creatorcontrib>Ng, Esmond G.</creatorcontrib><creatorcontrib>Yang, Chao</creatorcontrib><creatorcontrib>Bai, Zhaojun</creatorcontrib><creatorcontrib>Ge, Lixin</creatorcontrib><creatorcontrib>Kononenko, Oleksiy</creatorcontrib><creatorcontrib>Li, Zenghai</creatorcontrib><creatorcontrib>Ng, Cho-Kuen</creatorcontrib><creatorcontrib>Xiao, Liling</creatorcontrib><creatorcontrib>SLAC National Accelerator Lab., Menlo Park, CA (United States)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Van Beeumen, Roel</au><au>Marques, Osni</au><au>Ng, Esmond G.</au><au>Yang, Chao</au><au>Bai, Zhaojun</au><au>Ge, Lixin</au><au>Kononenko, Oleksiy</au><au>Li, Zenghai</au><au>Ng, Cho-Kuen</au><au>Xiao, Liling</au><aucorp>SLAC National Accelerator Lab., Menlo Park, CA (United States)</aucorp><aucorp>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computing resonant modes of accelerator cavities by solving nonlinear eigenvalue problems via rational approximation</atitle><jtitle>Journal of computational physics</jtitle><date>2018-12-01</date><risdate>2018</risdate><volume>374</volume><issue>C</issue><spage>1031</spage><epage>1043</epage><pages>1031-1043</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>We present an efficient and reliable algorithm for solving a class of nonlinear eigenvalue problems arising from the modeling of particle accelerator cavities. The eigenvalue nonlinearity in these problems results from the use of waveguides to couple external power sources or to allow certain excited electromagnetic modes to exit the cavity. We use a rational approximation to reduce the nonlinear eigenvalue problem first to a rational eigenvalue problem. We then apply a special linearization procedure to turn the rational eigenvalue problem into a larger linear eigenvalue problem with the same eigenvalues, which can be solved by existing iterative methods. By using a compact scheme to represent both the linearized operator and the eigenvectors to be computed, we obtain a numerical method that only involves solving linear systems of equations of the same dimension as the original nonlinear eigenvalue problem. We refer to this method as a compact rational Krylov (CORK) method. We implemented the CORK method in the Omega3P module of the Advanced Computational Electromagnetic 3D Parallel (ACE3P) simulation suite and validated it by comparing the computed cavity resonant frequencies and damping Q factors of a small model problem to those obtained from a fitting procedure that uses frequency responses computed by another ACE3P module called S3P. We also used the CORK method to compute trapped modes damped in an ideal eight 9-cell SRF cavity cryomodule. This was the first time it was possible to compute these modes directly. The damping Q factors of the computed modes match well with those measured in experiments and the difference in resonant frequencies is within the range introduced by cavity imperfection. Therefore, the CORK method is an extremely valuable tool for computational cavity design.</abstract><cop>Cambridge</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2018.08.017</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-2276-1153</orcidid><orcidid>https://orcid.org/0000000322761153</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 2018-12, Vol.374 (C), p.1031-1043
issn 0021-9991
1090-2716
language eng
recordid cdi_osti_scitechconnect_1490813
source ScienceDirect Journals
subjects Accelerator modeling
Algorithms
Approximation
Computation
Computational physics
Computer simulation
CORK method
Damping
Eigenvalues
Eigenvectors
Holes
Iterative methods
Linear systems
Linearization
Mathematical analysis
Mathematical models
MATHEMATICS AND COMPUTING
Nonlinear eigenvalue problem
Nonlinearity
Numerical methods
PARTICLE ACCELERATORS
Power sources
Q factors
Resonant frequencies
Software
Waveguides
title Computing resonant modes of accelerator cavities by solving nonlinear eigenvalue problems via rational approximation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T21%3A21%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computing%20resonant%20modes%20of%20accelerator%20cavities%20by%20solving%20nonlinear%20eigenvalue%20problems%20via%20rational%20approximation&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Van%20Beeumen,%20Roel&rft.aucorp=SLAC%20National%20Accelerator%20Lab.,%20Menlo%20Park,%20CA%20(United%20States)&rft.date=2018-12-01&rft.volume=374&rft.issue=C&rft.spage=1031&rft.epage=1043&rft.pages=1031-1043&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2018.08.017&rft_dat=%3Cproquest_osti_%3E2132683847%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c395t-b8097b309b2cfb992b106354eeae9ec6e8925729348592c7e1b3f43cf79b549d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2132683847&rft_id=info:pmid/&rfr_iscdi=true