Loading…
Asymmetrically strained quantum dots with non-fluctuating single-dot emission spectra and subthermal room-temperature linewidths
The application of colloidal semiconductor quantum dots as single-dot light sources still requires several challenges to be overcome. Recently, there has been considerable progress in suppressing intensity fluctuations (blinking) by encapsulating an emitting core in a thick protective shell. However...
Saved in:
Published in: | Nature materials 2019-03, Vol.18 (3), p.249-255 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The application of colloidal semiconductor quantum dots as single-dot light sources still requires several challenges to be overcome. Recently, there has been considerable progress in suppressing intensity fluctuations (blinking) by encapsulating an emitting core in a thick protective shell. However, these nanostructures still show considerable fluctuations in both emission energy and linewidth. Here we demonstrate type-I core/shell heterostructures that overcome these deficiencies. They are made by combining wurtzite semiconductors with a large, directionally anisotropic lattice mismatch, which results in strong asymmetric compression of the emitting core. This modifies the structure of band-edge excitonic states and leads to accelerated radiative decay, reduced exciton–phonon interactions, and suppressed coupling to the fluctuating electrostatic environment. As a result, individual asymmetrically strained dots exhibit highly stable emission energy ( |
---|---|
ISSN: | 1476-1122 1476-4660 |
DOI: | 10.1038/s41563-018-0254-7 |