Loading…

Li-Substituted Layered Spinel Cathode Material for Sodium Ion Batteries

The O3-type layered Na­(Ni x Fe y Mn z )­O2 (0 < x, y, z < 1) cathode materials have attracted great interest in sodium ion batteries due to the abundance and cost of raw materials and their high specific capacities. However, the cycling stability and rate capability at high voltages (> 4.0...

Full description

Saved in:
Bibliographic Details
Published in:Chemistry of materials 2018-11, Vol.30 (22), p.8145-8154
Main Authors: Deng, Changjian, Skinner, Paige, Liu, Yuzi, Sun, Meiling, Tong, Wei, Ma, Chunrong, Lau, Miu Lun, Hunt, Riley, Barnes, Pete, Xu, Jing, Xiong, Hui
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a369t-cf43eaf1dfe2877f6d57d1206a87ad2b4438e44b6223c831b8d6c950984806a23
cites cdi_FETCH-LOGICAL-a369t-cf43eaf1dfe2877f6d57d1206a87ad2b4438e44b6223c831b8d6c950984806a23
container_end_page 8154
container_issue 22
container_start_page 8145
container_title Chemistry of materials
container_volume 30
creator Deng, Changjian
Skinner, Paige
Liu, Yuzi
Sun, Meiling
Tong, Wei
Ma, Chunrong
Lau, Miu Lun
Hunt, Riley
Barnes, Pete
Xu, Jing
Xiong, Hui
description The O3-type layered Na­(Ni x Fe y Mn z )­O2 (0 < x, y, z < 1) cathode materials have attracted great interest in sodium ion batteries due to the abundance and cost of raw materials and their high specific capacities. However, the cycling stability and rate capability at high voltages (> 4.0 V) of these materials remain an issue. In this work, we successfully synthesized a Li-substituted layered-tunneled (O3-spinel) intergrowth cathode (LS-NFM) to address these issues. The remarkable structural compatibility and connectivity of the two phases were confirmed by X-ray diffraction (XRD), selected area electron diffraction (SAED), and high-resolution transmission electron microscopy (HRTEM). The LS-NFM electrode reached a discharge capacity of 96 mAh g–1 with a capacity retention of 86% after 100 cycles at a current rate of 100 mA g–1 in a voltage window of 2.0–4.2 V. Moreover, the LS-NFM cathode exhibited an enhanced rate capability in comparison to the undoped single-phased layered cathode (NFM). The enhanced rate capability of LS-NFM can be explained by the significantly increased effective Na+ diffusivity measured by the galvanostatic intermittent titration technique (GITT) compared to the undoped control NFM cathode, which can be ascribed to the improved charge transport kinetics through shortened diffusion path by direct connection between the 3D channels in the spinel phase and 2D channels in the layered phase. The results from ex situ hard/soft X-ray adsorption spectroscopy (XAS) suggest that the capacity of the LS-NFM cathode is mainly associated with the Ni2+/Ni4+ redox couple and slightly from the Fe3+/Fe4+ redox couple. The voltage profile of the LS-NFM cathode exhibits a reversible plateau above 4.0 V, indicating great stability at high voltages and structural stabilization by the spinel phase. In addition to the substitution of various transition metals, or the modification of the stoichiometry of each transition metal, this study provides a new strategy to improve electrochemical performance of layered cathode materials for sodium ion batteries.
doi_str_mv 10.1021/acs.chemmater.8b02614
format article
fullrecord <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1494597</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c291830335</sourcerecordid><originalsourceid>FETCH-LOGICAL-a369t-cf43eaf1dfe2877f6d57d1206a87ad2b4438e44b6223c831b8d6c950984806a23</originalsourceid><addsrcrecordid>eNqFkD1PwzAYhC0EEqXwE5Ai9hTb8VdGqKBUCmIIzJZjO6qrJq5sZ-i_x1ErVqYb7p7T-x4AjwiuEMToWem40js7DCrZsBIdxAyRK7BAFMOSQoivwQKKmpeEU3YL7mLcQ4gyKhZg07iynbqYXJqSNUWjTjZkbY9utIdirdLOG1t8ztVOHYreh6L1xk1DsfVj8arSbNh4D256dYj24aJL8PP-9r3-KJuvzXb90pSqYnUqdU8qq3pkeosF5z0zlBuEIVOCK4M7QiphCekYxpUWFeqEYbqmsBZE5BCuluDp3OvzyTJql6zeaT-OVieJSE1ozXOInkM6-BiD7eUxuEGFk0RQzpPJPJn8m0xeJsscOnOzvfdTGPMr_zC_00pzVA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Li-Substituted Layered Spinel Cathode Material for Sodium Ion Batteries</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Deng, Changjian ; Skinner, Paige ; Liu, Yuzi ; Sun, Meiling ; Tong, Wei ; Ma, Chunrong ; Lau, Miu Lun ; Hunt, Riley ; Barnes, Pete ; Xu, Jing ; Xiong, Hui</creator><creatorcontrib>Deng, Changjian ; Skinner, Paige ; Liu, Yuzi ; Sun, Meiling ; Tong, Wei ; Ma, Chunrong ; Lau, Miu Lun ; Hunt, Riley ; Barnes, Pete ; Xu, Jing ; Xiong, Hui ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>The O3-type layered Na­(Ni x Fe y Mn z )­O2 (0 &lt; x, y, z &lt; 1) cathode materials have attracted great interest in sodium ion batteries due to the abundance and cost of raw materials and their high specific capacities. However, the cycling stability and rate capability at high voltages (&gt; 4.0 V) of these materials remain an issue. In this work, we successfully synthesized a Li-substituted layered-tunneled (O3-spinel) intergrowth cathode (LS-NFM) to address these issues. The remarkable structural compatibility and connectivity of the two phases were confirmed by X-ray diffraction (XRD), selected area electron diffraction (SAED), and high-resolution transmission electron microscopy (HRTEM). The LS-NFM electrode reached a discharge capacity of 96 mAh g–1 with a capacity retention of 86% after 100 cycles at a current rate of 100 mA g–1 in a voltage window of 2.0–4.2 V. Moreover, the LS-NFM cathode exhibited an enhanced rate capability in comparison to the undoped single-phased layered cathode (NFM). The enhanced rate capability of LS-NFM can be explained by the significantly increased effective Na+ diffusivity measured by the galvanostatic intermittent titration technique (GITT) compared to the undoped control NFM cathode, which can be ascribed to the improved charge transport kinetics through shortened diffusion path by direct connection between the 3D channels in the spinel phase and 2D channels in the layered phase. The results from ex situ hard/soft X-ray adsorption spectroscopy (XAS) suggest that the capacity of the LS-NFM cathode is mainly associated with the Ni2+/Ni4+ redox couple and slightly from the Fe3+/Fe4+ redox couple. The voltage profile of the LS-NFM cathode exhibits a reversible plateau above 4.0 V, indicating great stability at high voltages and structural stabilization by the spinel phase. In addition to the substitution of various transition metals, or the modification of the stoichiometry of each transition metal, this study provides a new strategy to improve electrochemical performance of layered cathode materials for sodium ion batteries.</description><identifier>ISSN: 0897-4756</identifier><identifier>EISSN: 1520-5002</identifier><identifier>DOI: 10.1021/acs.chemmater.8b02614</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Chemistry of materials, 2018-11, Vol.30 (22), p.8145-8154</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a369t-cf43eaf1dfe2877f6d57d1206a87ad2b4438e44b6223c831b8d6c950984806a23</citedby><cites>FETCH-LOGICAL-a369t-cf43eaf1dfe2877f6d57d1206a87ad2b4438e44b6223c831b8d6c950984806a23</cites><orcidid>0000-0003-3126-1476 ; 0000-0002-2878-1297</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1494597$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Deng, Changjian</creatorcontrib><creatorcontrib>Skinner, Paige</creatorcontrib><creatorcontrib>Liu, Yuzi</creatorcontrib><creatorcontrib>Sun, Meiling</creatorcontrib><creatorcontrib>Tong, Wei</creatorcontrib><creatorcontrib>Ma, Chunrong</creatorcontrib><creatorcontrib>Lau, Miu Lun</creatorcontrib><creatorcontrib>Hunt, Riley</creatorcontrib><creatorcontrib>Barnes, Pete</creatorcontrib><creatorcontrib>Xu, Jing</creatorcontrib><creatorcontrib>Xiong, Hui</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Li-Substituted Layered Spinel Cathode Material for Sodium Ion Batteries</title><title>Chemistry of materials</title><addtitle>Chem. Mater</addtitle><description>The O3-type layered Na­(Ni x Fe y Mn z )­O2 (0 &lt; x, y, z &lt; 1) cathode materials have attracted great interest in sodium ion batteries due to the abundance and cost of raw materials and their high specific capacities. However, the cycling stability and rate capability at high voltages (&gt; 4.0 V) of these materials remain an issue. In this work, we successfully synthesized a Li-substituted layered-tunneled (O3-spinel) intergrowth cathode (LS-NFM) to address these issues. The remarkable structural compatibility and connectivity of the two phases were confirmed by X-ray diffraction (XRD), selected area electron diffraction (SAED), and high-resolution transmission electron microscopy (HRTEM). The LS-NFM electrode reached a discharge capacity of 96 mAh g–1 with a capacity retention of 86% after 100 cycles at a current rate of 100 mA g–1 in a voltage window of 2.0–4.2 V. Moreover, the LS-NFM cathode exhibited an enhanced rate capability in comparison to the undoped single-phased layered cathode (NFM). The enhanced rate capability of LS-NFM can be explained by the significantly increased effective Na+ diffusivity measured by the galvanostatic intermittent titration technique (GITT) compared to the undoped control NFM cathode, which can be ascribed to the improved charge transport kinetics through shortened diffusion path by direct connection between the 3D channels in the spinel phase and 2D channels in the layered phase. The results from ex situ hard/soft X-ray adsorption spectroscopy (XAS) suggest that the capacity of the LS-NFM cathode is mainly associated with the Ni2+/Ni4+ redox couple and slightly from the Fe3+/Fe4+ redox couple. The voltage profile of the LS-NFM cathode exhibits a reversible plateau above 4.0 V, indicating great stability at high voltages and structural stabilization by the spinel phase. In addition to the substitution of various transition metals, or the modification of the stoichiometry of each transition metal, this study provides a new strategy to improve electrochemical performance of layered cathode materials for sodium ion batteries.</description><issn>0897-4756</issn><issn>1520-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAYhC0EEqXwE5Ai9hTb8VdGqKBUCmIIzJZjO6qrJq5sZ-i_x1ErVqYb7p7T-x4AjwiuEMToWem40js7DCrZsBIdxAyRK7BAFMOSQoivwQKKmpeEU3YL7mLcQ4gyKhZg07iynbqYXJqSNUWjTjZkbY9utIdirdLOG1t8ztVOHYreh6L1xk1DsfVj8arSbNh4D256dYj24aJL8PP-9r3-KJuvzXb90pSqYnUqdU8qq3pkeosF5z0zlBuEIVOCK4M7QiphCekYxpUWFeqEYbqmsBZE5BCuluDp3OvzyTJql6zeaT-OVieJSE1ozXOInkM6-BiD7eUxuEGFk0RQzpPJPJn8m0xeJsscOnOzvfdTGPMr_zC_00pzVA</recordid><startdate>20181127</startdate><enddate>20181127</enddate><creator>Deng, Changjian</creator><creator>Skinner, Paige</creator><creator>Liu, Yuzi</creator><creator>Sun, Meiling</creator><creator>Tong, Wei</creator><creator>Ma, Chunrong</creator><creator>Lau, Miu Lun</creator><creator>Hunt, Riley</creator><creator>Barnes, Pete</creator><creator>Xu, Jing</creator><creator>Xiong, Hui</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-3126-1476</orcidid><orcidid>https://orcid.org/0000-0002-2878-1297</orcidid></search><sort><creationdate>20181127</creationdate><title>Li-Substituted Layered Spinel Cathode Material for Sodium Ion Batteries</title><author>Deng, Changjian ; Skinner, Paige ; Liu, Yuzi ; Sun, Meiling ; Tong, Wei ; Ma, Chunrong ; Lau, Miu Lun ; Hunt, Riley ; Barnes, Pete ; Xu, Jing ; Xiong, Hui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a369t-cf43eaf1dfe2877f6d57d1206a87ad2b4438e44b6223c831b8d6c950984806a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deng, Changjian</creatorcontrib><creatorcontrib>Skinner, Paige</creatorcontrib><creatorcontrib>Liu, Yuzi</creatorcontrib><creatorcontrib>Sun, Meiling</creatorcontrib><creatorcontrib>Tong, Wei</creatorcontrib><creatorcontrib>Ma, Chunrong</creatorcontrib><creatorcontrib>Lau, Miu Lun</creatorcontrib><creatorcontrib>Hunt, Riley</creatorcontrib><creatorcontrib>Barnes, Pete</creatorcontrib><creatorcontrib>Xu, Jing</creatorcontrib><creatorcontrib>Xiong, Hui</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Chemistry of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deng, Changjian</au><au>Skinner, Paige</au><au>Liu, Yuzi</au><au>Sun, Meiling</au><au>Tong, Wei</au><au>Ma, Chunrong</au><au>Lau, Miu Lun</au><au>Hunt, Riley</au><au>Barnes, Pete</au><au>Xu, Jing</au><au>Xiong, Hui</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Li-Substituted Layered Spinel Cathode Material for Sodium Ion Batteries</atitle><jtitle>Chemistry of materials</jtitle><addtitle>Chem. Mater</addtitle><date>2018-11-27</date><risdate>2018</risdate><volume>30</volume><issue>22</issue><spage>8145</spage><epage>8154</epage><pages>8145-8154</pages><issn>0897-4756</issn><eissn>1520-5002</eissn><abstract>The O3-type layered Na­(Ni x Fe y Mn z )­O2 (0 &lt; x, y, z &lt; 1) cathode materials have attracted great interest in sodium ion batteries due to the abundance and cost of raw materials and their high specific capacities. However, the cycling stability and rate capability at high voltages (&gt; 4.0 V) of these materials remain an issue. In this work, we successfully synthesized a Li-substituted layered-tunneled (O3-spinel) intergrowth cathode (LS-NFM) to address these issues. The remarkable structural compatibility and connectivity of the two phases were confirmed by X-ray diffraction (XRD), selected area electron diffraction (SAED), and high-resolution transmission electron microscopy (HRTEM). The LS-NFM electrode reached a discharge capacity of 96 mAh g–1 with a capacity retention of 86% after 100 cycles at a current rate of 100 mA g–1 in a voltage window of 2.0–4.2 V. Moreover, the LS-NFM cathode exhibited an enhanced rate capability in comparison to the undoped single-phased layered cathode (NFM). The enhanced rate capability of LS-NFM can be explained by the significantly increased effective Na+ diffusivity measured by the galvanostatic intermittent titration technique (GITT) compared to the undoped control NFM cathode, which can be ascribed to the improved charge transport kinetics through shortened diffusion path by direct connection between the 3D channels in the spinel phase and 2D channels in the layered phase. The results from ex situ hard/soft X-ray adsorption spectroscopy (XAS) suggest that the capacity of the LS-NFM cathode is mainly associated with the Ni2+/Ni4+ redox couple and slightly from the Fe3+/Fe4+ redox couple. The voltage profile of the LS-NFM cathode exhibits a reversible plateau above 4.0 V, indicating great stability at high voltages and structural stabilization by the spinel phase. In addition to the substitution of various transition metals, or the modification of the stoichiometry of each transition metal, this study provides a new strategy to improve electrochemical performance of layered cathode materials for sodium ion batteries.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acs.chemmater.8b02614</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3126-1476</orcidid><orcidid>https://orcid.org/0000-0002-2878-1297</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0897-4756
ispartof Chemistry of materials, 2018-11, Vol.30 (22), p.8145-8154
issn 0897-4756
1520-5002
language eng
recordid cdi_osti_scitechconnect_1494597
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Li-Substituted Layered Spinel Cathode Material for Sodium Ion Batteries
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T12%3A13%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Li-Substituted%20Layered%20Spinel%20Cathode%20Material%20for%20Sodium%20Ion%20Batteries&rft.jtitle=Chemistry%20of%20materials&rft.au=Deng,%20Changjian&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2018-11-27&rft.volume=30&rft.issue=22&rft.spage=8145&rft.epage=8154&rft.pages=8145-8154&rft.issn=0897-4756&rft.eissn=1520-5002&rft_id=info:doi/10.1021/acs.chemmater.8b02614&rft_dat=%3Cacs_osti_%3Ec291830335%3C/acs_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a369t-cf43eaf1dfe2877f6d57d1206a87ad2b4438e44b6223c831b8d6c950984806a23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true