Loading…
Conducting a metering assessment to identify submetering needs at a manufacturing facility
Submetering the energy consumption of processes, systems, or equipment at a manufacturing facility can provide insight into the energy efficiency and productivity of its operations. With the growth of the “Big Data” market and increasing number of submetering options, collecting data is not a challe...
Saved in:
Published in: | CIRP journal of manufacturing science and technology 2017-08, Vol.18 (C), p.107-114 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Submetering the energy consumption of processes, systems, or equipment at a manufacturing facility can provide insight into the energy efficiency and productivity of its operations. With the growth of the “Big Data” market and increasing number of submetering options, collecting data is not a challenge; collecting data that can result in actionable information leading to energy savings is a challenge. Further, as manufacturing is in the midst of the smart manufacturing and industrial analytics revolution, developing optimal submetering strategies is of increasing importance, especially if submeters are being installed as a retrofit to an existing facility/process. In particular, small to midsized manufacturing (SMM) facilities will require technical assistance to fully avail of submeter data and join the smart manufacturing revolution.
This paper presents a metering assessment as a method to identify the optimal use of submeters and applications of the collected data at a manufacturing facility. The metering assessment consists of temporarily submetering energy uses to identify future metering needs. The metering assessment involves gathering data on an energy use(s) over a finite length of time, conducting analysis of the data to better understand energy consumption characteristics of the energy uses, and developing an optimal permanent submetering strategy. Through the metering assessment, a facility can better identify uses for submetered data before installing permanent submeters, thereby limiting the collection of extraneous data. Further, the facility can avail of smart manufacturing opportunities by installing submeters as a retrofit and using the collected energy data to inform operational decisions in real-time.
The benefits of conducting a metering assessment are presented using an example from a SMM metal tube manufacturing facility. The results from a metering assessment conducted at the facility resolved outstanding operational issues while also identifying where permanent submetering could improve productivity. Through applying the metering assessment at an SMM facility and identifying uses of submeter data, this paper illustrates the type of technical assistance required to bring the benefits of smart manufacturing and industrial analytics to SMM facilities. |
---|---|
ISSN: | 1755-5817 1878-0016 |
DOI: | 10.1016/j.cirpj.2016.10.005 |