Loading…
Exploring spin-orbital coupling effects on photovoltaic actions in Sn and Pb based perovskite solar cells
Organo-metal halide perovskites, as emerging photovoltaic materials, have demonstrated interesting spin states due to spin-orbital coupling (SOC) effects. However, replacing the Pb with the Sn can inevitably affect the SOC and consequently changes the internal photovoltaic processes in the developme...
Saved in:
Published in: | Nano energy 2017-08, Vol.38 (C), p.297-303 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Organo-metal halide perovskites, as emerging photovoltaic materials, have demonstrated interesting spin states due to spin-orbital coupling (SOC) effects. However, replacing the Pb with the Sn can inevitably affect the SOC and consequently changes the internal photovoltaic processes in the development of environmentally friendly perovskite devices. Here, by operating the spin states with circularly polarized photoexcitation we report that the spin-dependent photocurrent (Jsc) becomes much more prominent upon replacing Pb with Sn, increasing the spin dependence from 0.25% to 1.25% by switching the photoexcitation from linear to circular polarization. Essentially, the spin-dependent Jsc is determined by the spin relaxation time, changing with the SOC strength, as compared to the charge dissociation time. On the other hand, our magneto-photocurrent (magneto-Jsc) results show that the internal magnetic parameter decreases from 281mT to 41mT upon Sn-Pb replacement, providing an evidence that the SOC is indeed weakened from Pb to Sn based solar cells. Furthermore, the spin-dependent photoluminescence (PL) indicates that weakening the SOC upon the Sn-Pb replacement leads to more antiparallel spin states (singlets) available for PL but less parallel spin states (triplets) available for photovoltaic action. Therefore, SOC plays an important role in the development of photovoltaic actions in Sn-based perovskite solar cells.
[Display omitted]
•SOC plays an important role in determining PV actions in perovskite solar cells.•Replace Pb with Sn then reduce SOC, weaken spin mixing between different spin states.•Parallel spin states are favorable for developing PV actions.•Antiparallel spin states are responsible for developing light-emission actions.•Reducing spin mixing decreases the density of parallel spin states for PV actions. |
---|---|
ISSN: | 2211-2855 |
DOI: | 10.1016/j.nanoen.2017.05.061 |