Loading…
Comparative genomics of Rhizophagus irregularis, R. cerebriforme, R. diaphanus and Gigaspora rosea highlights specific genetic features in Glomeromycotina
Glomeromycotina is a lineage of early diverging fungi that establish arbuscular mycorrhizal (AM) symbiosis with land plants. Despite their major ecological role, the genetic basis of their obligate mutualism remains largely unknown, hindering our understanding of their evolution and biology. We comp...
Saved in:
Published in: | The New phytologist 2019-05, Vol.222 (3), p.1584-1598 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c5777-54e3e4556c6280be2e31893fac049d7b86d669d19ba35ed0339b59109abe7493 |
---|---|
cites | cdi_FETCH-LOGICAL-c5777-54e3e4556c6280be2e31893fac049d7b86d669d19ba35ed0339b59109abe7493 |
container_end_page | 1598 |
container_issue | 3 |
container_start_page | 1584 |
container_title | The New phytologist |
container_volume | 222 |
creator | Morin, Emmanuelle Miyauchi, Shingo San Clemente, Hélène Chen, Eric C. H. Pelin, Adrian de la Providencia, Ivan Ndikumana, Steve Beaudet, Denis Hainaut, Mathieu Drula, Elodie Kuo, Alan Tang, Nianwu Roy, Sébastien Viala, Julie Henrissat, Bernard Grigoriev, Igor V. Corradi, Nicolas Roux, Christophe Martin, Francis M. |
description | Glomeromycotina is a lineage of early diverging fungi that establish arbuscular mycorrhizal (AM) symbiosis with land plants. Despite their major ecological role, the genetic basis of their obligate mutualism remains largely unknown, hindering our understanding of their evolution and biology.
We compared the genomes of Glomerales (Rhizophagus irregularis, Rhizophagus diaphanus, Rhizophagus cerebriforme) and Diversisporales (Gigaspora rosea) species, together with those of saprotrophic Mucoromycota, to identify gene families and processes associated with these lineages and to understand the molecular underpinning of their symbiotic lifestyle.
Genomic features in Glomeromycotina appear to be very similar with a very high content in transposons and protein-coding genes, extensive duplications of protein kinase genes, and loss of genes coding for lignocellulose degradation, thiamin biosynthesis and cytosolic fatty acid synthase. Most symbiosis-related genes in R. irregularis and G. rosea are specific to Glomeromycotina. We also confirmed that the present species have a homokaryotic genome organisation.
The high interspecific diversity of Glomeromycotina gene repertoires, affecting all known protein domains, as well as symbiosis-related orphan genes, may explain the known adaptation of Glomeromycotina to a wide range of environmental settings. Our findings contribute to an increasingly detailed portrait of genomic features defining the biology of AM fungi. |
doi_str_mv | 10.1111/nph.15687 |
format | article |
fullrecord | <record><control><sourceid>jstor_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1496650</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26675910</jstor_id><sourcerecordid>26675910</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5777-54e3e4556c6280be2e31893fac049d7b86d669d19ba35ed0339b59109abe7493</originalsourceid><addsrcrecordid>eNp1klGL1DAQx4Mo3t7pgx9ACfqiYPeSpk2bx2PRXWFROe7Bt5Cm0zZL29SkPdn7KH5a0-vdIoKBMDD85v-fTAahV5SsaTiX_dCsacrz7Ala0YSLKKcse4pWhMR5xBP-4wyde38ghIiUx8_RGSOccZaIFfq9sd2gnBrNLeAaetsZ7bGt8HVj7uzQqHry2DgH9dQqZ_xHfL3GGhwUzlTWdXCfKI0KaB9Q1Zd4a2rlB-sUdtaDwo2pmzbc0WM_gDaV0bMVjCFWoMbJQfDo8ba1HTjbHbUdTa9eoGeVaj28fIgX6Obzp5vNLtp_237ZXO0jnWZZFqUJMEjSlGse56SAGBjNBauUJokosyLnJeeipKJQLIWSMCaKVFAiVAFZItgFervIWj8a6bUZQTfa9j3oUdJEcJ6SAH1YoEa1cnCmU-4orTJyd7WXc47ENKeEi1sa2PcLOzj7cwI_ys54DW2rerCTlzHNRGiCitn73T_owU6uD6-VcUyymCaE_2Wuwzy9g-rUASVyXgAZFkDeL0Bg3zwoTkUH5Yl8_PEAXC7AL9PC8f9K8uv33aPk66Xi4EfrThUx59k8R_YH-MDEIA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2207214060</pqid></control><display><type>article</type><title>Comparative genomics of Rhizophagus irregularis, R. cerebriforme, R. diaphanus and Gigaspora rosea highlights specific genetic features in Glomeromycotina</title><source>Wiley-Blackwell Read & Publish Collection</source><source>JSTOR</source><creator>Morin, Emmanuelle ; Miyauchi, Shingo ; San Clemente, Hélène ; Chen, Eric C. H. ; Pelin, Adrian ; de la Providencia, Ivan ; Ndikumana, Steve ; Beaudet, Denis ; Hainaut, Mathieu ; Drula, Elodie ; Kuo, Alan ; Tang, Nianwu ; Roy, Sébastien ; Viala, Julie ; Henrissat, Bernard ; Grigoriev, Igor V. ; Corradi, Nicolas ; Roux, Christophe ; Martin, Francis M.</creator><creatorcontrib>Morin, Emmanuelle ; Miyauchi, Shingo ; San Clemente, Hélène ; Chen, Eric C. H. ; Pelin, Adrian ; de la Providencia, Ivan ; Ndikumana, Steve ; Beaudet, Denis ; Hainaut, Mathieu ; Drula, Elodie ; Kuo, Alan ; Tang, Nianwu ; Roy, Sébastien ; Viala, Julie ; Henrissat, Bernard ; Grigoriev, Igor V. ; Corradi, Nicolas ; Roux, Christophe ; Martin, Francis M.</creatorcontrib><description>Glomeromycotina is a lineage of early diverging fungi that establish arbuscular mycorrhizal (AM) symbiosis with land plants. Despite their major ecological role, the genetic basis of their obligate mutualism remains largely unknown, hindering our understanding of their evolution and biology.
We compared the genomes of Glomerales (Rhizophagus irregularis, Rhizophagus diaphanus, Rhizophagus cerebriforme) and Diversisporales (Gigaspora rosea) species, together with those of saprotrophic Mucoromycota, to identify gene families and processes associated with these lineages and to understand the molecular underpinning of their symbiotic lifestyle.
Genomic features in Glomeromycotina appear to be very similar with a very high content in transposons and protein-coding genes, extensive duplications of protein kinase genes, and loss of genes coding for lignocellulose degradation, thiamin biosynthesis and cytosolic fatty acid synthase. Most symbiosis-related genes in R. irregularis and G. rosea are specific to Glomeromycotina. We also confirmed that the present species have a homokaryotic genome organisation.
The high interspecific diversity of Glomeromycotina gene repertoires, affecting all known protein domains, as well as symbiosis-related orphan genes, may explain the known adaptation of Glomeromycotina to a wide range of environmental settings. Our findings contribute to an increasingly detailed portrait of genomic features defining the biology of AM fungi.</description><identifier>ISSN: 0028-646X</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/nph.15687</identifier><identifier>PMID: 30636349</identifier><language>eng</language><publisher>England: Wiley</publisher><subject>Adaptation ; arbuscular mycorrhizal fungi ; Arbuscular mycorrhizas ; Biodegradation ; Biodiversity ; Biological evolution ; Biology ; Biosynthesis ; carbohydrate‐active enzymes ; Conserved Sequence ; DNA Transposable Elements - genetics ; Fatty acids ; Fatty-acid synthase ; fungal evolution ; Fungi ; Gene families ; Genes ; Genes, Fungal ; Genome, Fungal ; Genomes ; Genomics ; Gigaspora rosea ; Glomeromycota - genetics ; Glomeromycotina ; Interspecific ; interspecific variation ; Kinases ; Life Sciences ; Lignin - metabolism ; Lignocellulose ; Microbiology and Parasitology ; Multigene Family ; Mutualism ; Mycology ; Phylogeny ; Polysaccharides - metabolism ; Protein kinase ; protein kinases ; Proteins ; Reproduction ; Rhizophagus ; Rhizophagus irregularis ; Species diversity ; Symbionts ; Symbiosis ; Symbiosis - genetics ; Thiamine ; Transcription, Genetic ; transposable elements ; Transposons ; Up-Regulation - genetics</subject><ispartof>The New phytologist, 2019-05, Vol.222 (3), p.1584-1598</ispartof><rights>2019 The Authors © 2019 New Phytologist Trust</rights><rights>2019 The Authors. New Phytologist © 2019 New Phytologist Trust</rights><rights>2019 The Authors. New Phytologist © 2019 New Phytologist Trust.</rights><rights>Copyright © 2019 New Phytologist Trust</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5777-54e3e4556c6280be2e31893fac049d7b86d669d19ba35ed0339b59109abe7493</citedby><cites>FETCH-LOGICAL-c5777-54e3e4556c6280be2e31893fac049d7b86d669d19ba35ed0339b59109abe7493</cites><orcidid>0000-0002-9168-5214 ; 0000-0002-7268-972X ; 0000-0002-4737-3715 ; 0000-0001-5367-7259 ; 0000-0001-5688-5379 ; 0000-0002-7932-7932 ; 0000-0002-3434-8588 ; 0000-0002-0620-5547 ; 0000-0002-3136-8903 ; 0000-0003-3514-3530 ; 0000-0002-1864-6577 ; 0000000206205547 ; 0000000231368903 ; 0000000153677259 ; 0000000234348588 ; 0000000247373715 ; 000000027268972X ; 0000000156885379 ; 0000000279327932 ; 0000000291685214</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26675910$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26675910$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30636349$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02181069$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1496650$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Morin, Emmanuelle</creatorcontrib><creatorcontrib>Miyauchi, Shingo</creatorcontrib><creatorcontrib>San Clemente, Hélène</creatorcontrib><creatorcontrib>Chen, Eric C. H.</creatorcontrib><creatorcontrib>Pelin, Adrian</creatorcontrib><creatorcontrib>de la Providencia, Ivan</creatorcontrib><creatorcontrib>Ndikumana, Steve</creatorcontrib><creatorcontrib>Beaudet, Denis</creatorcontrib><creatorcontrib>Hainaut, Mathieu</creatorcontrib><creatorcontrib>Drula, Elodie</creatorcontrib><creatorcontrib>Kuo, Alan</creatorcontrib><creatorcontrib>Tang, Nianwu</creatorcontrib><creatorcontrib>Roy, Sébastien</creatorcontrib><creatorcontrib>Viala, Julie</creatorcontrib><creatorcontrib>Henrissat, Bernard</creatorcontrib><creatorcontrib>Grigoriev, Igor V.</creatorcontrib><creatorcontrib>Corradi, Nicolas</creatorcontrib><creatorcontrib>Roux, Christophe</creatorcontrib><creatorcontrib>Martin, Francis M.</creatorcontrib><title>Comparative genomics of Rhizophagus irregularis, R. cerebriforme, R. diaphanus and Gigaspora rosea highlights specific genetic features in Glomeromycotina</title><title>The New phytologist</title><addtitle>New Phytol</addtitle><description>Glomeromycotina is a lineage of early diverging fungi that establish arbuscular mycorrhizal (AM) symbiosis with land plants. Despite their major ecological role, the genetic basis of their obligate mutualism remains largely unknown, hindering our understanding of their evolution and biology.
We compared the genomes of Glomerales (Rhizophagus irregularis, Rhizophagus diaphanus, Rhizophagus cerebriforme) and Diversisporales (Gigaspora rosea) species, together with those of saprotrophic Mucoromycota, to identify gene families and processes associated with these lineages and to understand the molecular underpinning of their symbiotic lifestyle.
Genomic features in Glomeromycotina appear to be very similar with a very high content in transposons and protein-coding genes, extensive duplications of protein kinase genes, and loss of genes coding for lignocellulose degradation, thiamin biosynthesis and cytosolic fatty acid synthase. Most symbiosis-related genes in R. irregularis and G. rosea are specific to Glomeromycotina. We also confirmed that the present species have a homokaryotic genome organisation.
The high interspecific diversity of Glomeromycotina gene repertoires, affecting all known protein domains, as well as symbiosis-related orphan genes, may explain the known adaptation of Glomeromycotina to a wide range of environmental settings. Our findings contribute to an increasingly detailed portrait of genomic features defining the biology of AM fungi.</description><subject>Adaptation</subject><subject>arbuscular mycorrhizal fungi</subject><subject>Arbuscular mycorrhizas</subject><subject>Biodegradation</subject><subject>Biodiversity</subject><subject>Biological evolution</subject><subject>Biology</subject><subject>Biosynthesis</subject><subject>carbohydrate‐active enzymes</subject><subject>Conserved Sequence</subject><subject>DNA Transposable Elements - genetics</subject><subject>Fatty acids</subject><subject>Fatty-acid synthase</subject><subject>fungal evolution</subject><subject>Fungi</subject><subject>Gene families</subject><subject>Genes</subject><subject>Genes, Fungal</subject><subject>Genome, Fungal</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Gigaspora rosea</subject><subject>Glomeromycota - genetics</subject><subject>Glomeromycotina</subject><subject>Interspecific</subject><subject>interspecific variation</subject><subject>Kinases</subject><subject>Life Sciences</subject><subject>Lignin - metabolism</subject><subject>Lignocellulose</subject><subject>Microbiology and Parasitology</subject><subject>Multigene Family</subject><subject>Mutualism</subject><subject>Mycology</subject><subject>Phylogeny</subject><subject>Polysaccharides - metabolism</subject><subject>Protein kinase</subject><subject>protein kinases</subject><subject>Proteins</subject><subject>Reproduction</subject><subject>Rhizophagus</subject><subject>Rhizophagus irregularis</subject><subject>Species diversity</subject><subject>Symbionts</subject><subject>Symbiosis</subject><subject>Symbiosis - genetics</subject><subject>Thiamine</subject><subject>Transcription, Genetic</subject><subject>transposable elements</subject><subject>Transposons</subject><subject>Up-Regulation - genetics</subject><issn>0028-646X</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1klGL1DAQx4Mo3t7pgx9ACfqiYPeSpk2bx2PRXWFROe7Bt5Cm0zZL29SkPdn7KH5a0-vdIoKBMDD85v-fTAahV5SsaTiX_dCsacrz7Ala0YSLKKcse4pWhMR5xBP-4wyde38ghIiUx8_RGSOccZaIFfq9sd2gnBrNLeAaetsZ7bGt8HVj7uzQqHry2DgH9dQqZ_xHfL3GGhwUzlTWdXCfKI0KaB9Q1Zd4a2rlB-sUdtaDwo2pmzbc0WM_gDaV0bMVjCFWoMbJQfDo8ba1HTjbHbUdTa9eoGeVaj28fIgX6Obzp5vNLtp_237ZXO0jnWZZFqUJMEjSlGse56SAGBjNBauUJokosyLnJeeipKJQLIWSMCaKVFAiVAFZItgFervIWj8a6bUZQTfa9j3oUdJEcJ6SAH1YoEa1cnCmU-4orTJyd7WXc47ENKeEi1sa2PcLOzj7cwI_ys54DW2rerCTlzHNRGiCitn73T_owU6uD6-VcUyymCaE_2Wuwzy9g-rUASVyXgAZFkDeL0Bg3zwoTkUH5Yl8_PEAXC7AL9PC8f9K8uv33aPk66Xi4EfrThUx59k8R_YH-MDEIA</recordid><startdate>201905</startdate><enddate>201905</enddate><creator>Morin, Emmanuelle</creator><creator>Miyauchi, Shingo</creator><creator>San Clemente, Hélène</creator><creator>Chen, Eric C. H.</creator><creator>Pelin, Adrian</creator><creator>de la Providencia, Ivan</creator><creator>Ndikumana, Steve</creator><creator>Beaudet, Denis</creator><creator>Hainaut, Mathieu</creator><creator>Drula, Elodie</creator><creator>Kuo, Alan</creator><creator>Tang, Nianwu</creator><creator>Roy, Sébastien</creator><creator>Viala, Julie</creator><creator>Henrissat, Bernard</creator><creator>Grigoriev, Igor V.</creator><creator>Corradi, Nicolas</creator><creator>Roux, Christophe</creator><creator>Martin, Francis M.</creator><general>Wiley</general><general>Wiley Subscription Services, Inc</general><general>Wiley-Blackwell</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-9168-5214</orcidid><orcidid>https://orcid.org/0000-0002-7268-972X</orcidid><orcidid>https://orcid.org/0000-0002-4737-3715</orcidid><orcidid>https://orcid.org/0000-0001-5367-7259</orcidid><orcidid>https://orcid.org/0000-0001-5688-5379</orcidid><orcidid>https://orcid.org/0000-0002-7932-7932</orcidid><orcidid>https://orcid.org/0000-0002-3434-8588</orcidid><orcidid>https://orcid.org/0000-0002-0620-5547</orcidid><orcidid>https://orcid.org/0000-0002-3136-8903</orcidid><orcidid>https://orcid.org/0000-0003-3514-3530</orcidid><orcidid>https://orcid.org/0000-0002-1864-6577</orcidid><orcidid>https://orcid.org/0000000206205547</orcidid><orcidid>https://orcid.org/0000000231368903</orcidid><orcidid>https://orcid.org/0000000153677259</orcidid><orcidid>https://orcid.org/0000000234348588</orcidid><orcidid>https://orcid.org/0000000247373715</orcidid><orcidid>https://orcid.org/000000027268972X</orcidid><orcidid>https://orcid.org/0000000156885379</orcidid><orcidid>https://orcid.org/0000000279327932</orcidid><orcidid>https://orcid.org/0000000291685214</orcidid></search><sort><creationdate>201905</creationdate><title>Comparative genomics of Rhizophagus irregularis, R. cerebriforme, R. diaphanus and Gigaspora rosea highlights specific genetic features in Glomeromycotina</title><author>Morin, Emmanuelle ; Miyauchi, Shingo ; San Clemente, Hélène ; Chen, Eric C. H. ; Pelin, Adrian ; de la Providencia, Ivan ; Ndikumana, Steve ; Beaudet, Denis ; Hainaut, Mathieu ; Drula, Elodie ; Kuo, Alan ; Tang, Nianwu ; Roy, Sébastien ; Viala, Julie ; Henrissat, Bernard ; Grigoriev, Igor V. ; Corradi, Nicolas ; Roux, Christophe ; Martin, Francis M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5777-54e3e4556c6280be2e31893fac049d7b86d669d19ba35ed0339b59109abe7493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adaptation</topic><topic>arbuscular mycorrhizal fungi</topic><topic>Arbuscular mycorrhizas</topic><topic>Biodegradation</topic><topic>Biodiversity</topic><topic>Biological evolution</topic><topic>Biology</topic><topic>Biosynthesis</topic><topic>carbohydrate‐active enzymes</topic><topic>Conserved Sequence</topic><topic>DNA Transposable Elements - genetics</topic><topic>Fatty acids</topic><topic>Fatty-acid synthase</topic><topic>fungal evolution</topic><topic>Fungi</topic><topic>Gene families</topic><topic>Genes</topic><topic>Genes, Fungal</topic><topic>Genome, Fungal</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Gigaspora rosea</topic><topic>Glomeromycota - genetics</topic><topic>Glomeromycotina</topic><topic>Interspecific</topic><topic>interspecific variation</topic><topic>Kinases</topic><topic>Life Sciences</topic><topic>Lignin - metabolism</topic><topic>Lignocellulose</topic><topic>Microbiology and Parasitology</topic><topic>Multigene Family</topic><topic>Mutualism</topic><topic>Mycology</topic><topic>Phylogeny</topic><topic>Polysaccharides - metabolism</topic><topic>Protein kinase</topic><topic>protein kinases</topic><topic>Proteins</topic><topic>Reproduction</topic><topic>Rhizophagus</topic><topic>Rhizophagus irregularis</topic><topic>Species diversity</topic><topic>Symbionts</topic><topic>Symbiosis</topic><topic>Symbiosis - genetics</topic><topic>Thiamine</topic><topic>Transcription, Genetic</topic><topic>transposable elements</topic><topic>Transposons</topic><topic>Up-Regulation - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morin, Emmanuelle</creatorcontrib><creatorcontrib>Miyauchi, Shingo</creatorcontrib><creatorcontrib>San Clemente, Hélène</creatorcontrib><creatorcontrib>Chen, Eric C. H.</creatorcontrib><creatorcontrib>Pelin, Adrian</creatorcontrib><creatorcontrib>de la Providencia, Ivan</creatorcontrib><creatorcontrib>Ndikumana, Steve</creatorcontrib><creatorcontrib>Beaudet, Denis</creatorcontrib><creatorcontrib>Hainaut, Mathieu</creatorcontrib><creatorcontrib>Drula, Elodie</creatorcontrib><creatorcontrib>Kuo, Alan</creatorcontrib><creatorcontrib>Tang, Nianwu</creatorcontrib><creatorcontrib>Roy, Sébastien</creatorcontrib><creatorcontrib>Viala, Julie</creatorcontrib><creatorcontrib>Henrissat, Bernard</creatorcontrib><creatorcontrib>Grigoriev, Igor V.</creatorcontrib><creatorcontrib>Corradi, Nicolas</creatorcontrib><creatorcontrib>Roux, Christophe</creatorcontrib><creatorcontrib>Martin, Francis M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>OSTI.GOV</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morin, Emmanuelle</au><au>Miyauchi, Shingo</au><au>San Clemente, Hélène</au><au>Chen, Eric C. H.</au><au>Pelin, Adrian</au><au>de la Providencia, Ivan</au><au>Ndikumana, Steve</au><au>Beaudet, Denis</au><au>Hainaut, Mathieu</au><au>Drula, Elodie</au><au>Kuo, Alan</au><au>Tang, Nianwu</au><au>Roy, Sébastien</au><au>Viala, Julie</au><au>Henrissat, Bernard</au><au>Grigoriev, Igor V.</au><au>Corradi, Nicolas</au><au>Roux, Christophe</au><au>Martin, Francis M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparative genomics of Rhizophagus irregularis, R. cerebriforme, R. diaphanus and Gigaspora rosea highlights specific genetic features in Glomeromycotina</atitle><jtitle>The New phytologist</jtitle><addtitle>New Phytol</addtitle><date>2019-05</date><risdate>2019</risdate><volume>222</volume><issue>3</issue><spage>1584</spage><epage>1598</epage><pages>1584-1598</pages><issn>0028-646X</issn><eissn>1469-8137</eissn><abstract>Glomeromycotina is a lineage of early diverging fungi that establish arbuscular mycorrhizal (AM) symbiosis with land plants. Despite their major ecological role, the genetic basis of their obligate mutualism remains largely unknown, hindering our understanding of their evolution and biology.
We compared the genomes of Glomerales (Rhizophagus irregularis, Rhizophagus diaphanus, Rhizophagus cerebriforme) and Diversisporales (Gigaspora rosea) species, together with those of saprotrophic Mucoromycota, to identify gene families and processes associated with these lineages and to understand the molecular underpinning of their symbiotic lifestyle.
Genomic features in Glomeromycotina appear to be very similar with a very high content in transposons and protein-coding genes, extensive duplications of protein kinase genes, and loss of genes coding for lignocellulose degradation, thiamin biosynthesis and cytosolic fatty acid synthase. Most symbiosis-related genes in R. irregularis and G. rosea are specific to Glomeromycotina. We also confirmed that the present species have a homokaryotic genome organisation.
The high interspecific diversity of Glomeromycotina gene repertoires, affecting all known protein domains, as well as symbiosis-related orphan genes, may explain the known adaptation of Glomeromycotina to a wide range of environmental settings. Our findings contribute to an increasingly detailed portrait of genomic features defining the biology of AM fungi.</abstract><cop>England</cop><pub>Wiley</pub><pmid>30636349</pmid><doi>10.1111/nph.15687</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-9168-5214</orcidid><orcidid>https://orcid.org/0000-0002-7268-972X</orcidid><orcidid>https://orcid.org/0000-0002-4737-3715</orcidid><orcidid>https://orcid.org/0000-0001-5367-7259</orcidid><orcidid>https://orcid.org/0000-0001-5688-5379</orcidid><orcidid>https://orcid.org/0000-0002-7932-7932</orcidid><orcidid>https://orcid.org/0000-0002-3434-8588</orcidid><orcidid>https://orcid.org/0000-0002-0620-5547</orcidid><orcidid>https://orcid.org/0000-0002-3136-8903</orcidid><orcidid>https://orcid.org/0000-0003-3514-3530</orcidid><orcidid>https://orcid.org/0000-0002-1864-6577</orcidid><orcidid>https://orcid.org/0000000206205547</orcidid><orcidid>https://orcid.org/0000000231368903</orcidid><orcidid>https://orcid.org/0000000153677259</orcidid><orcidid>https://orcid.org/0000000234348588</orcidid><orcidid>https://orcid.org/0000000247373715</orcidid><orcidid>https://orcid.org/000000027268972X</orcidid><orcidid>https://orcid.org/0000000156885379</orcidid><orcidid>https://orcid.org/0000000279327932</orcidid><orcidid>https://orcid.org/0000000291685214</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-646X |
ispartof | The New phytologist, 2019-05, Vol.222 (3), p.1584-1598 |
issn | 0028-646X 1469-8137 |
language | eng |
recordid | cdi_osti_scitechconnect_1496650 |
source | Wiley-Blackwell Read & Publish Collection; JSTOR |
subjects | Adaptation arbuscular mycorrhizal fungi Arbuscular mycorrhizas Biodegradation Biodiversity Biological evolution Biology Biosynthesis carbohydrate‐active enzymes Conserved Sequence DNA Transposable Elements - genetics Fatty acids Fatty-acid synthase fungal evolution Fungi Gene families Genes Genes, Fungal Genome, Fungal Genomes Genomics Gigaspora rosea Glomeromycota - genetics Glomeromycotina Interspecific interspecific variation Kinases Life Sciences Lignin - metabolism Lignocellulose Microbiology and Parasitology Multigene Family Mutualism Mycology Phylogeny Polysaccharides - metabolism Protein kinase protein kinases Proteins Reproduction Rhizophagus Rhizophagus irregularis Species diversity Symbionts Symbiosis Symbiosis - genetics Thiamine Transcription, Genetic transposable elements Transposons Up-Regulation - genetics |
title | Comparative genomics of Rhizophagus irregularis, R. cerebriforme, R. diaphanus and Gigaspora rosea highlights specific genetic features in Glomeromycotina |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T22%3A03%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparative%20genomics%20of%20Rhizophagus%20irregularis,%20R.%20cerebriforme,%20R.%20diaphanus%20and%20Gigaspora%20rosea%20highlights%20specific%20genetic%20features%20in%20Glomeromycotina&rft.jtitle=The%20New%20phytologist&rft.au=Morin,%20Emmanuelle&rft.date=2019-05&rft.volume=222&rft.issue=3&rft.spage=1584&rft.epage=1598&rft.pages=1584-1598&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/nph.15687&rft_dat=%3Cjstor_osti_%3E26675910%3C/jstor_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5777-54e3e4556c6280be2e31893fac049d7b86d669d19ba35ed0339b59109abe7493%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2207214060&rft_id=info:pmid/30636349&rft_jstor_id=26675910&rfr_iscdi=true |