Loading…

Comparative genomics of Rhizophagus irregularis, R. cerebriforme, R. diaphanus and Gigaspora rosea highlights specific genetic features in Glomeromycotina

Glomeromycotina is a lineage of early diverging fungi that establish arbuscular mycorrhizal (AM) symbiosis with land plants. Despite their major ecological role, the genetic basis of their obligate mutualism remains largely unknown, hindering our understanding of their evolution and biology. We comp...

Full description

Saved in:
Bibliographic Details
Published in:The New phytologist 2019-05, Vol.222 (3), p.1584-1598
Main Authors: Morin, Emmanuelle, Miyauchi, Shingo, San Clemente, Hélène, Chen, Eric C. H., Pelin, Adrian, de la Providencia, Ivan, Ndikumana, Steve, Beaudet, Denis, Hainaut, Mathieu, Drula, Elodie, Kuo, Alan, Tang, Nianwu, Roy, Sébastien, Viala, Julie, Henrissat, Bernard, Grigoriev, Igor V., Corradi, Nicolas, Roux, Christophe, Martin, Francis M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5777-54e3e4556c6280be2e31893fac049d7b86d669d19ba35ed0339b59109abe7493
cites cdi_FETCH-LOGICAL-c5777-54e3e4556c6280be2e31893fac049d7b86d669d19ba35ed0339b59109abe7493
container_end_page 1598
container_issue 3
container_start_page 1584
container_title The New phytologist
container_volume 222
creator Morin, Emmanuelle
Miyauchi, Shingo
San Clemente, Hélène
Chen, Eric C. H.
Pelin, Adrian
de la Providencia, Ivan
Ndikumana, Steve
Beaudet, Denis
Hainaut, Mathieu
Drula, Elodie
Kuo, Alan
Tang, Nianwu
Roy, Sébastien
Viala, Julie
Henrissat, Bernard
Grigoriev, Igor V.
Corradi, Nicolas
Roux, Christophe
Martin, Francis M.
description Glomeromycotina is a lineage of early diverging fungi that establish arbuscular mycorrhizal (AM) symbiosis with land plants. Despite their major ecological role, the genetic basis of their obligate mutualism remains largely unknown, hindering our understanding of their evolution and biology. We compared the genomes of Glomerales (Rhizophagus irregularis, Rhizophagus diaphanus, Rhizophagus cerebriforme) and Diversisporales (Gigaspora rosea) species, together with those of saprotrophic Mucoromycota, to identify gene families and processes associated with these lineages and to understand the molecular underpinning of their symbiotic lifestyle. Genomic features in Glomeromycotina appear to be very similar with a very high content in transposons and protein-coding genes, extensive duplications of protein kinase genes, and loss of genes coding for lignocellulose degradation, thiamin biosynthesis and cytosolic fatty acid synthase. Most symbiosis-related genes in R. irregularis and G. rosea are specific to Glomeromycotina. We also confirmed that the present species have a homokaryotic genome organisation. The high interspecific diversity of Glomeromycotina gene repertoires, affecting all known protein domains, as well as symbiosis-related orphan genes, may explain the known adaptation of Glomeromycotina to a wide range of environmental settings. Our findings contribute to an increasingly detailed portrait of genomic features defining the biology of AM fungi.
doi_str_mv 10.1111/nph.15687
format article
fullrecord <record><control><sourceid>jstor_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1496650</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26675910</jstor_id><sourcerecordid>26675910</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5777-54e3e4556c6280be2e31893fac049d7b86d669d19ba35ed0339b59109abe7493</originalsourceid><addsrcrecordid>eNp1klGL1DAQx4Mo3t7pgx9ACfqiYPeSpk2bx2PRXWFROe7Bt5Cm0zZL29SkPdn7KH5a0-vdIoKBMDD85v-fTAahV5SsaTiX_dCsacrz7Ala0YSLKKcse4pWhMR5xBP-4wyde38ghIiUx8_RGSOccZaIFfq9sd2gnBrNLeAaetsZ7bGt8HVj7uzQqHry2DgH9dQqZ_xHfL3GGhwUzlTWdXCfKI0KaB9Q1Zd4a2rlB-sUdtaDwo2pmzbc0WM_gDaV0bMVjCFWoMbJQfDo8ba1HTjbHbUdTa9eoGeVaj28fIgX6Obzp5vNLtp_237ZXO0jnWZZFqUJMEjSlGse56SAGBjNBauUJokosyLnJeeipKJQLIWSMCaKVFAiVAFZItgFervIWj8a6bUZQTfa9j3oUdJEcJ6SAH1YoEa1cnCmU-4orTJyd7WXc47ENKeEi1sa2PcLOzj7cwI_ys54DW2rerCTlzHNRGiCitn73T_owU6uD6-VcUyymCaE_2Wuwzy9g-rUASVyXgAZFkDeL0Bg3zwoTkUH5Yl8_PEAXC7AL9PC8f9K8uv33aPk66Xi4EfrThUx59k8R_YH-MDEIA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2207214060</pqid></control><display><type>article</type><title>Comparative genomics of Rhizophagus irregularis, R. cerebriforme, R. diaphanus and Gigaspora rosea highlights specific genetic features in Glomeromycotina</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><source>JSTOR</source><creator>Morin, Emmanuelle ; Miyauchi, Shingo ; San Clemente, Hélène ; Chen, Eric C. H. ; Pelin, Adrian ; de la Providencia, Ivan ; Ndikumana, Steve ; Beaudet, Denis ; Hainaut, Mathieu ; Drula, Elodie ; Kuo, Alan ; Tang, Nianwu ; Roy, Sébastien ; Viala, Julie ; Henrissat, Bernard ; Grigoriev, Igor V. ; Corradi, Nicolas ; Roux, Christophe ; Martin, Francis M.</creator><creatorcontrib>Morin, Emmanuelle ; Miyauchi, Shingo ; San Clemente, Hélène ; Chen, Eric C. H. ; Pelin, Adrian ; de la Providencia, Ivan ; Ndikumana, Steve ; Beaudet, Denis ; Hainaut, Mathieu ; Drula, Elodie ; Kuo, Alan ; Tang, Nianwu ; Roy, Sébastien ; Viala, Julie ; Henrissat, Bernard ; Grigoriev, Igor V. ; Corradi, Nicolas ; Roux, Christophe ; Martin, Francis M.</creatorcontrib><description>Glomeromycotina is a lineage of early diverging fungi that establish arbuscular mycorrhizal (AM) symbiosis with land plants. Despite their major ecological role, the genetic basis of their obligate mutualism remains largely unknown, hindering our understanding of their evolution and biology. We compared the genomes of Glomerales (Rhizophagus irregularis, Rhizophagus diaphanus, Rhizophagus cerebriforme) and Diversisporales (Gigaspora rosea) species, together with those of saprotrophic Mucoromycota, to identify gene families and processes associated with these lineages and to understand the molecular underpinning of their symbiotic lifestyle. Genomic features in Glomeromycotina appear to be very similar with a very high content in transposons and protein-coding genes, extensive duplications of protein kinase genes, and loss of genes coding for lignocellulose degradation, thiamin biosynthesis and cytosolic fatty acid synthase. Most symbiosis-related genes in R. irregularis and G. rosea are specific to Glomeromycotina. We also confirmed that the present species have a homokaryotic genome organisation. The high interspecific diversity of Glomeromycotina gene repertoires, affecting all known protein domains, as well as symbiosis-related orphan genes, may explain the known adaptation of Glomeromycotina to a wide range of environmental settings. Our findings contribute to an increasingly detailed portrait of genomic features defining the biology of AM fungi.</description><identifier>ISSN: 0028-646X</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/nph.15687</identifier><identifier>PMID: 30636349</identifier><language>eng</language><publisher>England: Wiley</publisher><subject>Adaptation ; arbuscular mycorrhizal fungi ; Arbuscular mycorrhizas ; Biodegradation ; Biodiversity ; Biological evolution ; Biology ; Biosynthesis ; carbohydrate‐active enzymes ; Conserved Sequence ; DNA Transposable Elements - genetics ; Fatty acids ; Fatty-acid synthase ; fungal evolution ; Fungi ; Gene families ; Genes ; Genes, Fungal ; Genome, Fungal ; Genomes ; Genomics ; Gigaspora rosea ; Glomeromycota - genetics ; Glomeromycotina ; Interspecific ; interspecific variation ; Kinases ; Life Sciences ; Lignin - metabolism ; Lignocellulose ; Microbiology and Parasitology ; Multigene Family ; Mutualism ; Mycology ; Phylogeny ; Polysaccharides - metabolism ; Protein kinase ; protein kinases ; Proteins ; Reproduction ; Rhizophagus ; Rhizophagus irregularis ; Species diversity ; Symbionts ; Symbiosis ; Symbiosis - genetics ; Thiamine ; Transcription, Genetic ; transposable elements ; Transposons ; Up-Regulation - genetics</subject><ispartof>The New phytologist, 2019-05, Vol.222 (3), p.1584-1598</ispartof><rights>2019 The Authors © 2019 New Phytologist Trust</rights><rights>2019 The Authors. New Phytologist © 2019 New Phytologist Trust</rights><rights>2019 The Authors. New Phytologist © 2019 New Phytologist Trust.</rights><rights>Copyright © 2019 New Phytologist Trust</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5777-54e3e4556c6280be2e31893fac049d7b86d669d19ba35ed0339b59109abe7493</citedby><cites>FETCH-LOGICAL-c5777-54e3e4556c6280be2e31893fac049d7b86d669d19ba35ed0339b59109abe7493</cites><orcidid>0000-0002-9168-5214 ; 0000-0002-7268-972X ; 0000-0002-4737-3715 ; 0000-0001-5367-7259 ; 0000-0001-5688-5379 ; 0000-0002-7932-7932 ; 0000-0002-3434-8588 ; 0000-0002-0620-5547 ; 0000-0002-3136-8903 ; 0000-0003-3514-3530 ; 0000-0002-1864-6577 ; 0000000206205547 ; 0000000231368903 ; 0000000153677259 ; 0000000234348588 ; 0000000247373715 ; 000000027268972X ; 0000000156885379 ; 0000000279327932 ; 0000000291685214</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26675910$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26675910$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30636349$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02181069$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1496650$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Morin, Emmanuelle</creatorcontrib><creatorcontrib>Miyauchi, Shingo</creatorcontrib><creatorcontrib>San Clemente, Hélène</creatorcontrib><creatorcontrib>Chen, Eric C. H.</creatorcontrib><creatorcontrib>Pelin, Adrian</creatorcontrib><creatorcontrib>de la Providencia, Ivan</creatorcontrib><creatorcontrib>Ndikumana, Steve</creatorcontrib><creatorcontrib>Beaudet, Denis</creatorcontrib><creatorcontrib>Hainaut, Mathieu</creatorcontrib><creatorcontrib>Drula, Elodie</creatorcontrib><creatorcontrib>Kuo, Alan</creatorcontrib><creatorcontrib>Tang, Nianwu</creatorcontrib><creatorcontrib>Roy, Sébastien</creatorcontrib><creatorcontrib>Viala, Julie</creatorcontrib><creatorcontrib>Henrissat, Bernard</creatorcontrib><creatorcontrib>Grigoriev, Igor V.</creatorcontrib><creatorcontrib>Corradi, Nicolas</creatorcontrib><creatorcontrib>Roux, Christophe</creatorcontrib><creatorcontrib>Martin, Francis M.</creatorcontrib><title>Comparative genomics of Rhizophagus irregularis, R. cerebriforme, R. diaphanus and Gigaspora rosea highlights specific genetic features in Glomeromycotina</title><title>The New phytologist</title><addtitle>New Phytol</addtitle><description>Glomeromycotina is a lineage of early diverging fungi that establish arbuscular mycorrhizal (AM) symbiosis with land plants. Despite their major ecological role, the genetic basis of their obligate mutualism remains largely unknown, hindering our understanding of their evolution and biology. We compared the genomes of Glomerales (Rhizophagus irregularis, Rhizophagus diaphanus, Rhizophagus cerebriforme) and Diversisporales (Gigaspora rosea) species, together with those of saprotrophic Mucoromycota, to identify gene families and processes associated with these lineages and to understand the molecular underpinning of their symbiotic lifestyle. Genomic features in Glomeromycotina appear to be very similar with a very high content in transposons and protein-coding genes, extensive duplications of protein kinase genes, and loss of genes coding for lignocellulose degradation, thiamin biosynthesis and cytosolic fatty acid synthase. Most symbiosis-related genes in R. irregularis and G. rosea are specific to Glomeromycotina. We also confirmed that the present species have a homokaryotic genome organisation. The high interspecific diversity of Glomeromycotina gene repertoires, affecting all known protein domains, as well as symbiosis-related orphan genes, may explain the known adaptation of Glomeromycotina to a wide range of environmental settings. Our findings contribute to an increasingly detailed portrait of genomic features defining the biology of AM fungi.</description><subject>Adaptation</subject><subject>arbuscular mycorrhizal fungi</subject><subject>Arbuscular mycorrhizas</subject><subject>Biodegradation</subject><subject>Biodiversity</subject><subject>Biological evolution</subject><subject>Biology</subject><subject>Biosynthesis</subject><subject>carbohydrate‐active enzymes</subject><subject>Conserved Sequence</subject><subject>DNA Transposable Elements - genetics</subject><subject>Fatty acids</subject><subject>Fatty-acid synthase</subject><subject>fungal evolution</subject><subject>Fungi</subject><subject>Gene families</subject><subject>Genes</subject><subject>Genes, Fungal</subject><subject>Genome, Fungal</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Gigaspora rosea</subject><subject>Glomeromycota - genetics</subject><subject>Glomeromycotina</subject><subject>Interspecific</subject><subject>interspecific variation</subject><subject>Kinases</subject><subject>Life Sciences</subject><subject>Lignin - metabolism</subject><subject>Lignocellulose</subject><subject>Microbiology and Parasitology</subject><subject>Multigene Family</subject><subject>Mutualism</subject><subject>Mycology</subject><subject>Phylogeny</subject><subject>Polysaccharides - metabolism</subject><subject>Protein kinase</subject><subject>protein kinases</subject><subject>Proteins</subject><subject>Reproduction</subject><subject>Rhizophagus</subject><subject>Rhizophagus irregularis</subject><subject>Species diversity</subject><subject>Symbionts</subject><subject>Symbiosis</subject><subject>Symbiosis - genetics</subject><subject>Thiamine</subject><subject>Transcription, Genetic</subject><subject>transposable elements</subject><subject>Transposons</subject><subject>Up-Regulation - genetics</subject><issn>0028-646X</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1klGL1DAQx4Mo3t7pgx9ACfqiYPeSpk2bx2PRXWFROe7Bt5Cm0zZL29SkPdn7KH5a0-vdIoKBMDD85v-fTAahV5SsaTiX_dCsacrz7Ala0YSLKKcse4pWhMR5xBP-4wyde38ghIiUx8_RGSOccZaIFfq9sd2gnBrNLeAaetsZ7bGt8HVj7uzQqHry2DgH9dQqZ_xHfL3GGhwUzlTWdXCfKI0KaB9Q1Zd4a2rlB-sUdtaDwo2pmzbc0WM_gDaV0bMVjCFWoMbJQfDo8ba1HTjbHbUdTa9eoGeVaj28fIgX6Obzp5vNLtp_237ZXO0jnWZZFqUJMEjSlGse56SAGBjNBauUJokosyLnJeeipKJQLIWSMCaKVFAiVAFZItgFervIWj8a6bUZQTfa9j3oUdJEcJ6SAH1YoEa1cnCmU-4orTJyd7WXc47ENKeEi1sa2PcLOzj7cwI_ys54DW2rerCTlzHNRGiCitn73T_owU6uD6-VcUyymCaE_2Wuwzy9g-rUASVyXgAZFkDeL0Bg3zwoTkUH5Yl8_PEAXC7AL9PC8f9K8uv33aPk66Xi4EfrThUx59k8R_YH-MDEIA</recordid><startdate>201905</startdate><enddate>201905</enddate><creator>Morin, Emmanuelle</creator><creator>Miyauchi, Shingo</creator><creator>San Clemente, Hélène</creator><creator>Chen, Eric C. H.</creator><creator>Pelin, Adrian</creator><creator>de la Providencia, Ivan</creator><creator>Ndikumana, Steve</creator><creator>Beaudet, Denis</creator><creator>Hainaut, Mathieu</creator><creator>Drula, Elodie</creator><creator>Kuo, Alan</creator><creator>Tang, Nianwu</creator><creator>Roy, Sébastien</creator><creator>Viala, Julie</creator><creator>Henrissat, Bernard</creator><creator>Grigoriev, Igor V.</creator><creator>Corradi, Nicolas</creator><creator>Roux, Christophe</creator><creator>Martin, Francis M.</creator><general>Wiley</general><general>Wiley Subscription Services, Inc</general><general>Wiley-Blackwell</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-9168-5214</orcidid><orcidid>https://orcid.org/0000-0002-7268-972X</orcidid><orcidid>https://orcid.org/0000-0002-4737-3715</orcidid><orcidid>https://orcid.org/0000-0001-5367-7259</orcidid><orcidid>https://orcid.org/0000-0001-5688-5379</orcidid><orcidid>https://orcid.org/0000-0002-7932-7932</orcidid><orcidid>https://orcid.org/0000-0002-3434-8588</orcidid><orcidid>https://orcid.org/0000-0002-0620-5547</orcidid><orcidid>https://orcid.org/0000-0002-3136-8903</orcidid><orcidid>https://orcid.org/0000-0003-3514-3530</orcidid><orcidid>https://orcid.org/0000-0002-1864-6577</orcidid><orcidid>https://orcid.org/0000000206205547</orcidid><orcidid>https://orcid.org/0000000231368903</orcidid><orcidid>https://orcid.org/0000000153677259</orcidid><orcidid>https://orcid.org/0000000234348588</orcidid><orcidid>https://orcid.org/0000000247373715</orcidid><orcidid>https://orcid.org/000000027268972X</orcidid><orcidid>https://orcid.org/0000000156885379</orcidid><orcidid>https://orcid.org/0000000279327932</orcidid><orcidid>https://orcid.org/0000000291685214</orcidid></search><sort><creationdate>201905</creationdate><title>Comparative genomics of Rhizophagus irregularis, R. cerebriforme, R. diaphanus and Gigaspora rosea highlights specific genetic features in Glomeromycotina</title><author>Morin, Emmanuelle ; Miyauchi, Shingo ; San Clemente, Hélène ; Chen, Eric C. H. ; Pelin, Adrian ; de la Providencia, Ivan ; Ndikumana, Steve ; Beaudet, Denis ; Hainaut, Mathieu ; Drula, Elodie ; Kuo, Alan ; Tang, Nianwu ; Roy, Sébastien ; Viala, Julie ; Henrissat, Bernard ; Grigoriev, Igor V. ; Corradi, Nicolas ; Roux, Christophe ; Martin, Francis M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5777-54e3e4556c6280be2e31893fac049d7b86d669d19ba35ed0339b59109abe7493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adaptation</topic><topic>arbuscular mycorrhizal fungi</topic><topic>Arbuscular mycorrhizas</topic><topic>Biodegradation</topic><topic>Biodiversity</topic><topic>Biological evolution</topic><topic>Biology</topic><topic>Biosynthesis</topic><topic>carbohydrate‐active enzymes</topic><topic>Conserved Sequence</topic><topic>DNA Transposable Elements - genetics</topic><topic>Fatty acids</topic><topic>Fatty-acid synthase</topic><topic>fungal evolution</topic><topic>Fungi</topic><topic>Gene families</topic><topic>Genes</topic><topic>Genes, Fungal</topic><topic>Genome, Fungal</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Gigaspora rosea</topic><topic>Glomeromycota - genetics</topic><topic>Glomeromycotina</topic><topic>Interspecific</topic><topic>interspecific variation</topic><topic>Kinases</topic><topic>Life Sciences</topic><topic>Lignin - metabolism</topic><topic>Lignocellulose</topic><topic>Microbiology and Parasitology</topic><topic>Multigene Family</topic><topic>Mutualism</topic><topic>Mycology</topic><topic>Phylogeny</topic><topic>Polysaccharides - metabolism</topic><topic>Protein kinase</topic><topic>protein kinases</topic><topic>Proteins</topic><topic>Reproduction</topic><topic>Rhizophagus</topic><topic>Rhizophagus irregularis</topic><topic>Species diversity</topic><topic>Symbionts</topic><topic>Symbiosis</topic><topic>Symbiosis - genetics</topic><topic>Thiamine</topic><topic>Transcription, Genetic</topic><topic>transposable elements</topic><topic>Transposons</topic><topic>Up-Regulation - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morin, Emmanuelle</creatorcontrib><creatorcontrib>Miyauchi, Shingo</creatorcontrib><creatorcontrib>San Clemente, Hélène</creatorcontrib><creatorcontrib>Chen, Eric C. H.</creatorcontrib><creatorcontrib>Pelin, Adrian</creatorcontrib><creatorcontrib>de la Providencia, Ivan</creatorcontrib><creatorcontrib>Ndikumana, Steve</creatorcontrib><creatorcontrib>Beaudet, Denis</creatorcontrib><creatorcontrib>Hainaut, Mathieu</creatorcontrib><creatorcontrib>Drula, Elodie</creatorcontrib><creatorcontrib>Kuo, Alan</creatorcontrib><creatorcontrib>Tang, Nianwu</creatorcontrib><creatorcontrib>Roy, Sébastien</creatorcontrib><creatorcontrib>Viala, Julie</creatorcontrib><creatorcontrib>Henrissat, Bernard</creatorcontrib><creatorcontrib>Grigoriev, Igor V.</creatorcontrib><creatorcontrib>Corradi, Nicolas</creatorcontrib><creatorcontrib>Roux, Christophe</creatorcontrib><creatorcontrib>Martin, Francis M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>OSTI.GOV</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morin, Emmanuelle</au><au>Miyauchi, Shingo</au><au>San Clemente, Hélène</au><au>Chen, Eric C. H.</au><au>Pelin, Adrian</au><au>de la Providencia, Ivan</au><au>Ndikumana, Steve</au><au>Beaudet, Denis</au><au>Hainaut, Mathieu</au><au>Drula, Elodie</au><au>Kuo, Alan</au><au>Tang, Nianwu</au><au>Roy, Sébastien</au><au>Viala, Julie</au><au>Henrissat, Bernard</au><au>Grigoriev, Igor V.</au><au>Corradi, Nicolas</au><au>Roux, Christophe</au><au>Martin, Francis M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparative genomics of Rhizophagus irregularis, R. cerebriforme, R. diaphanus and Gigaspora rosea highlights specific genetic features in Glomeromycotina</atitle><jtitle>The New phytologist</jtitle><addtitle>New Phytol</addtitle><date>2019-05</date><risdate>2019</risdate><volume>222</volume><issue>3</issue><spage>1584</spage><epage>1598</epage><pages>1584-1598</pages><issn>0028-646X</issn><eissn>1469-8137</eissn><abstract>Glomeromycotina is a lineage of early diverging fungi that establish arbuscular mycorrhizal (AM) symbiosis with land plants. Despite their major ecological role, the genetic basis of their obligate mutualism remains largely unknown, hindering our understanding of their evolution and biology. We compared the genomes of Glomerales (Rhizophagus irregularis, Rhizophagus diaphanus, Rhizophagus cerebriforme) and Diversisporales (Gigaspora rosea) species, together with those of saprotrophic Mucoromycota, to identify gene families and processes associated with these lineages and to understand the molecular underpinning of their symbiotic lifestyle. Genomic features in Glomeromycotina appear to be very similar with a very high content in transposons and protein-coding genes, extensive duplications of protein kinase genes, and loss of genes coding for lignocellulose degradation, thiamin biosynthesis and cytosolic fatty acid synthase. Most symbiosis-related genes in R. irregularis and G. rosea are specific to Glomeromycotina. We also confirmed that the present species have a homokaryotic genome organisation. The high interspecific diversity of Glomeromycotina gene repertoires, affecting all known protein domains, as well as symbiosis-related orphan genes, may explain the known adaptation of Glomeromycotina to a wide range of environmental settings. Our findings contribute to an increasingly detailed portrait of genomic features defining the biology of AM fungi.</abstract><cop>England</cop><pub>Wiley</pub><pmid>30636349</pmid><doi>10.1111/nph.15687</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-9168-5214</orcidid><orcidid>https://orcid.org/0000-0002-7268-972X</orcidid><orcidid>https://orcid.org/0000-0002-4737-3715</orcidid><orcidid>https://orcid.org/0000-0001-5367-7259</orcidid><orcidid>https://orcid.org/0000-0001-5688-5379</orcidid><orcidid>https://orcid.org/0000-0002-7932-7932</orcidid><orcidid>https://orcid.org/0000-0002-3434-8588</orcidid><orcidid>https://orcid.org/0000-0002-0620-5547</orcidid><orcidid>https://orcid.org/0000-0002-3136-8903</orcidid><orcidid>https://orcid.org/0000-0003-3514-3530</orcidid><orcidid>https://orcid.org/0000-0002-1864-6577</orcidid><orcidid>https://orcid.org/0000000206205547</orcidid><orcidid>https://orcid.org/0000000231368903</orcidid><orcidid>https://orcid.org/0000000153677259</orcidid><orcidid>https://orcid.org/0000000234348588</orcidid><orcidid>https://orcid.org/0000000247373715</orcidid><orcidid>https://orcid.org/000000027268972X</orcidid><orcidid>https://orcid.org/0000000156885379</orcidid><orcidid>https://orcid.org/0000000279327932</orcidid><orcidid>https://orcid.org/0000000291685214</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-646X
ispartof The New phytologist, 2019-05, Vol.222 (3), p.1584-1598
issn 0028-646X
1469-8137
language eng
recordid cdi_osti_scitechconnect_1496650
source Wiley-Blackwell Read & Publish Collection; JSTOR
subjects Adaptation
arbuscular mycorrhizal fungi
Arbuscular mycorrhizas
Biodegradation
Biodiversity
Biological evolution
Biology
Biosynthesis
carbohydrate‐active enzymes
Conserved Sequence
DNA Transposable Elements - genetics
Fatty acids
Fatty-acid synthase
fungal evolution
Fungi
Gene families
Genes
Genes, Fungal
Genome, Fungal
Genomes
Genomics
Gigaspora rosea
Glomeromycota - genetics
Glomeromycotina
Interspecific
interspecific variation
Kinases
Life Sciences
Lignin - metabolism
Lignocellulose
Microbiology and Parasitology
Multigene Family
Mutualism
Mycology
Phylogeny
Polysaccharides - metabolism
Protein kinase
protein kinases
Proteins
Reproduction
Rhizophagus
Rhizophagus irregularis
Species diversity
Symbionts
Symbiosis
Symbiosis - genetics
Thiamine
Transcription, Genetic
transposable elements
Transposons
Up-Regulation - genetics
title Comparative genomics of Rhizophagus irregularis, R. cerebriforme, R. diaphanus and Gigaspora rosea highlights specific genetic features in Glomeromycotina
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T22%3A03%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparative%20genomics%20of%20Rhizophagus%20irregularis,%20R.%20cerebriforme,%20R.%20diaphanus%20and%20Gigaspora%20rosea%20highlights%20specific%20genetic%20features%20in%20Glomeromycotina&rft.jtitle=The%20New%20phytologist&rft.au=Morin,%20Emmanuelle&rft.date=2019-05&rft.volume=222&rft.issue=3&rft.spage=1584&rft.epage=1598&rft.pages=1584-1598&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/nph.15687&rft_dat=%3Cjstor_osti_%3E26675910%3C/jstor_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5777-54e3e4556c6280be2e31893fac049d7b86d669d19ba35ed0339b59109abe7493%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2207214060&rft_id=info:pmid/30636349&rft_jstor_id=26675910&rfr_iscdi=true