Loading…

Characterization of surface layers formed on DU10Mo ingots after processing steps and high humidity exposure

The design of monolithic UMo fuel elements fabricated from low-enriched uranium for use in high-power research reactors requires bonding of the fuel foil to either Al cladding or a Zr barrier layer. Processing of the UMo ingot to final foil form has the potential to generate surface layers on the fo...

Full description

Saved in:
Bibliographic Details
Published in:Journal of nuclear materials 2019-02, Vol.514 (C), p.28-39
Main Authors: Kaspar, Tiffany C., Arendt, Christina L., Neal, Derek L., Riechers, Shawn L., Rutherford, Crystal, Schemer-Kohrn, Alan, Spurgeon, Steven R., Sweet, Lucas E., Joshi, Vineet V., Lavender, Curt A., Shimskey, Rick W.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c411t-eb5eab2597a438cff11880998a7cf9cb851aeac5e5826b67f278ec3f41f89c3a3
cites cdi_FETCH-LOGICAL-c411t-eb5eab2597a438cff11880998a7cf9cb851aeac5e5826b67f278ec3f41f89c3a3
container_end_page 39
container_issue C
container_start_page 28
container_title Journal of nuclear materials
container_volume 514
creator Kaspar, Tiffany C.
Arendt, Christina L.
Neal, Derek L.
Riechers, Shawn L.
Rutherford, Crystal
Schemer-Kohrn, Alan
Spurgeon, Steven R.
Sweet, Lucas E.
Joshi, Vineet V.
Lavender, Curt A.
Shimskey, Rick W.
description The design of monolithic UMo fuel elements fabricated from low-enriched uranium for use in high-power research reactors requires bonding of the fuel foil to either Al cladding or a Zr barrier layer. Processing of the UMo ingot to final foil form has the potential to generate surface layers on the foil that differ from the bulk, metallic UMo. The interfacial properties between the UMo and Zr or Al cladding layers will then be determined by these surface layers. We use x-ray photoelectron spectroscopy, cross-sectional scanning electron microscopy, and atomic force microscopy to characterize the composition, oxidation state, and morphology of the surface layers that form after hot rolling and cold rolling depleted U–10 wt% Mo alloy (DU10Mo). A thick uranium nitride layer is observed after hot rolling, although its origin is likely from a previous processing step. The efficacy of acid etching in HNO3 is compared to that of electropolishing in H2SO4 to remove surface nitride and oxide layers, and both methods are found to be similarly effective. Both laboratory (low humidity) air exposure and longer rinse times in water are shown to promote the formation of surface oxide layers. Exposure of both acid-etched and electropolished DU10Mo foils to humid air (97% relative humidity) for six weeks results in formation of a thick oxide layer due to corrosion. The oxide layer on the acid-etched foil is thicker and more highly oxidized than the oxide layer that forms on the electropolished foil, and these differences in oxidation behavior are attributed to higher surface roughness on the acid-etched foil. In general, Mo is found to play a role as a sacrificial element, typically exhibiting a larger ratio of Mo6+/Mo4+ than U6+/U4+. This is unexpected, given the greater thermodynamic driving force to form U oxides than Mo oxides. •Surface characterization of monolithic UMo fuel elements.•Efficacy of acid etching vs. electropolishing to remove surface oxide.•Characterized by x-ray photoelectron spectroscopy and scanning electron microscopy.•Surface roughness enhances oxidation in high humidity environment.
doi_str_mv 10.1016/j.jnucmat.2018.11.022
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1496823</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002231151831047X</els_id><sourcerecordid>2181757247</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-eb5eab2597a438cff11880998a7cf9cb851aeac5e5826b67f278ec3f41f89c3a3</originalsourceid><addsrcrecordid>eNqFUMFq3DAUFCWFbtJ-QkE0Z7t6srWWTyVs0jaQ0ktzFtrnp1hm19pKcuj266Nlc8_pwbyZYWYY-wyiBgHrr1M9zQvuba6lAF0D1ELKd2wFumuqVktxwVaiQFUDoD6wy5QmIYTqhVqx3Wa00WKm6P_b7MPMg-Npic4i8Z09UkzchbingZff7SOIX4H7-SnkxK0rMn6IASmlgvGU6VDgeeCjfxr5uOz94POR079DKJ70kb13dpfo0-u9Yo_f7_5sflYPv3_cb24eKmwBckVbRXYrVd_ZttHoHIDWou-17dD1uNUKLFlUpLRcb9edk50mbFwLTvfY2OaKfTn7hpS9Segz4YhhngmzgbZfa9kU0vWZVAr8XShlM4UlziWXkaChU51su8JSZxbGkFIkZw7R7208GhDmtL6ZzOv65rS-ATBl6qL7dtZR6fnsKZ5i0Iw0-HhKMQT_hsMLxKKR3g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2181757247</pqid></control><display><type>article</type><title>Characterization of surface layers formed on DU10Mo ingots after processing steps and high humidity exposure</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Kaspar, Tiffany C. ; Arendt, Christina L. ; Neal, Derek L. ; Riechers, Shawn L. ; Rutherford, Crystal ; Schemer-Kohrn, Alan ; Spurgeon, Steven R. ; Sweet, Lucas E. ; Joshi, Vineet V. ; Lavender, Curt A. ; Shimskey, Rick W.</creator><creatorcontrib>Kaspar, Tiffany C. ; Arendt, Christina L. ; Neal, Derek L. ; Riechers, Shawn L. ; Rutherford, Crystal ; Schemer-Kohrn, Alan ; Spurgeon, Steven R. ; Sweet, Lucas E. ; Joshi, Vineet V. ; Lavender, Curt A. ; Shimskey, Rick W. ; Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><description>The design of monolithic UMo fuel elements fabricated from low-enriched uranium for use in high-power research reactors requires bonding of the fuel foil to either Al cladding or a Zr barrier layer. Processing of the UMo ingot to final foil form has the potential to generate surface layers on the foil that differ from the bulk, metallic UMo. The interfacial properties between the UMo and Zr or Al cladding layers will then be determined by these surface layers. We use x-ray photoelectron spectroscopy, cross-sectional scanning electron microscopy, and atomic force microscopy to characterize the composition, oxidation state, and morphology of the surface layers that form after hot rolling and cold rolling depleted U–10 wt% Mo alloy (DU10Mo). A thick uranium nitride layer is observed after hot rolling, although its origin is likely from a previous processing step. The efficacy of acid etching in HNO3 is compared to that of electropolishing in H2SO4 to remove surface nitride and oxide layers, and both methods are found to be similarly effective. Both laboratory (low humidity) air exposure and longer rinse times in water are shown to promote the formation of surface oxide layers. Exposure of both acid-etched and electropolished DU10Mo foils to humid air (97% relative humidity) for six weeks results in formation of a thick oxide layer due to corrosion. The oxide layer on the acid-etched foil is thicker and more highly oxidized than the oxide layer that forms on the electropolished foil, and these differences in oxidation behavior are attributed to higher surface roughness on the acid-etched foil. In general, Mo is found to play a role as a sacrificial element, typically exhibiting a larger ratio of Mo6+/Mo4+ than U6+/U4+. This is unexpected, given the greater thermodynamic driving force to form U oxides than Mo oxides. •Surface characterization of monolithic UMo fuel elements.•Efficacy of acid etching vs. electropolishing to remove surface oxide.•Characterized by x-ray photoelectron spectroscopy and scanning electron microscopy.•Surface roughness enhances oxidation in high humidity environment.</description><identifier>ISSN: 0022-3115</identifier><identifier>EISSN: 1873-4820</identifier><identifier>DOI: 10.1016/j.jnucmat.2018.11.022</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Acid etch ; Acids ; Air exposure ; Atomic force microscopy ; Barrier layers ; Cladding ; Cold rolling ; Corrosion ; Electropolish ; Etching ; Exposure ; Foils ; Hot rolling ; Humidity ; Ingots ; Interfacial properties ; Microscopy ; Molybdenum ; Morphology ; Nitrides ; Nuclear fuel elements ; Nuclear fuels ; Oxidation ; Oxides ; Photoelectron spectroscopy ; Photoelectrons ; Relative humidity ; Scanning electron microscopy ; Sulfuric acid ; Surface layers ; Surface oxide ; Surface roughness ; U-Mo ; Uranium ; USHPRR ; Valence ; XPS ; Zirconium</subject><ispartof>Journal of nuclear materials, 2019-02, Vol.514 (C), p.28-39</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright Elsevier BV Feb 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-eb5eab2597a438cff11880998a7cf9cb851aeac5e5826b67f278ec3f41f89c3a3</citedby><cites>FETCH-LOGICAL-c411t-eb5eab2597a438cff11880998a7cf9cb851aeac5e5826b67f278ec3f41f89c3a3</cites><orcidid>0000-0002-5713-5534 ; 0000-0003-1218-839X ; 0000-0003-2816-7569 ; 000000031218839X ; 0000000328167569 ; 0000000257135534</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1496823$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kaspar, Tiffany C.</creatorcontrib><creatorcontrib>Arendt, Christina L.</creatorcontrib><creatorcontrib>Neal, Derek L.</creatorcontrib><creatorcontrib>Riechers, Shawn L.</creatorcontrib><creatorcontrib>Rutherford, Crystal</creatorcontrib><creatorcontrib>Schemer-Kohrn, Alan</creatorcontrib><creatorcontrib>Spurgeon, Steven R.</creatorcontrib><creatorcontrib>Sweet, Lucas E.</creatorcontrib><creatorcontrib>Joshi, Vineet V.</creatorcontrib><creatorcontrib>Lavender, Curt A.</creatorcontrib><creatorcontrib>Shimskey, Rick W.</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><title>Characterization of surface layers formed on DU10Mo ingots after processing steps and high humidity exposure</title><title>Journal of nuclear materials</title><description>The design of monolithic UMo fuel elements fabricated from low-enriched uranium for use in high-power research reactors requires bonding of the fuel foil to either Al cladding or a Zr barrier layer. Processing of the UMo ingot to final foil form has the potential to generate surface layers on the foil that differ from the bulk, metallic UMo. The interfacial properties between the UMo and Zr or Al cladding layers will then be determined by these surface layers. We use x-ray photoelectron spectroscopy, cross-sectional scanning electron microscopy, and atomic force microscopy to characterize the composition, oxidation state, and morphology of the surface layers that form after hot rolling and cold rolling depleted U–10 wt% Mo alloy (DU10Mo). A thick uranium nitride layer is observed after hot rolling, although its origin is likely from a previous processing step. The efficacy of acid etching in HNO3 is compared to that of electropolishing in H2SO4 to remove surface nitride and oxide layers, and both methods are found to be similarly effective. Both laboratory (low humidity) air exposure and longer rinse times in water are shown to promote the formation of surface oxide layers. Exposure of both acid-etched and electropolished DU10Mo foils to humid air (97% relative humidity) for six weeks results in formation of a thick oxide layer due to corrosion. The oxide layer on the acid-etched foil is thicker and more highly oxidized than the oxide layer that forms on the electropolished foil, and these differences in oxidation behavior are attributed to higher surface roughness on the acid-etched foil. In general, Mo is found to play a role as a sacrificial element, typically exhibiting a larger ratio of Mo6+/Mo4+ than U6+/U4+. This is unexpected, given the greater thermodynamic driving force to form U oxides than Mo oxides. •Surface characterization of monolithic UMo fuel elements.•Efficacy of acid etching vs. electropolishing to remove surface oxide.•Characterized by x-ray photoelectron spectroscopy and scanning electron microscopy.•Surface roughness enhances oxidation in high humidity environment.</description><subject>Acid etch</subject><subject>Acids</subject><subject>Air exposure</subject><subject>Atomic force microscopy</subject><subject>Barrier layers</subject><subject>Cladding</subject><subject>Cold rolling</subject><subject>Corrosion</subject><subject>Electropolish</subject><subject>Etching</subject><subject>Exposure</subject><subject>Foils</subject><subject>Hot rolling</subject><subject>Humidity</subject><subject>Ingots</subject><subject>Interfacial properties</subject><subject>Microscopy</subject><subject>Molybdenum</subject><subject>Morphology</subject><subject>Nitrides</subject><subject>Nuclear fuel elements</subject><subject>Nuclear fuels</subject><subject>Oxidation</subject><subject>Oxides</subject><subject>Photoelectron spectroscopy</subject><subject>Photoelectrons</subject><subject>Relative humidity</subject><subject>Scanning electron microscopy</subject><subject>Sulfuric acid</subject><subject>Surface layers</subject><subject>Surface oxide</subject><subject>Surface roughness</subject><subject>U-Mo</subject><subject>Uranium</subject><subject>USHPRR</subject><subject>Valence</subject><subject>XPS</subject><subject>Zirconium</subject><issn>0022-3115</issn><issn>1873-4820</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFUMFq3DAUFCWFbtJ-QkE0Z7t6srWWTyVs0jaQ0ktzFtrnp1hm19pKcuj266Nlc8_pwbyZYWYY-wyiBgHrr1M9zQvuba6lAF0D1ELKd2wFumuqVktxwVaiQFUDoD6wy5QmIYTqhVqx3Wa00WKm6P_b7MPMg-Npic4i8Z09UkzchbingZff7SOIX4H7-SnkxK0rMn6IASmlgvGU6VDgeeCjfxr5uOz94POR079DKJ70kb13dpfo0-u9Yo_f7_5sflYPv3_cb24eKmwBckVbRXYrVd_ZttHoHIDWou-17dD1uNUKLFlUpLRcb9edk50mbFwLTvfY2OaKfTn7hpS9Segz4YhhngmzgbZfa9kU0vWZVAr8XShlM4UlziWXkaChU51su8JSZxbGkFIkZw7R7208GhDmtL6ZzOv65rS-ATBl6qL7dtZR6fnsKZ5i0Iw0-HhKMQT_hsMLxKKR3g</recordid><startdate>201902</startdate><enddate>201902</enddate><creator>Kaspar, Tiffany C.</creator><creator>Arendt, Christina L.</creator><creator>Neal, Derek L.</creator><creator>Riechers, Shawn L.</creator><creator>Rutherford, Crystal</creator><creator>Schemer-Kohrn, Alan</creator><creator>Spurgeon, Steven R.</creator><creator>Sweet, Lucas E.</creator><creator>Joshi, Vineet V.</creator><creator>Lavender, Curt A.</creator><creator>Shimskey, Rick W.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>7ST</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-5713-5534</orcidid><orcidid>https://orcid.org/0000-0003-1218-839X</orcidid><orcidid>https://orcid.org/0000-0003-2816-7569</orcidid><orcidid>https://orcid.org/000000031218839X</orcidid><orcidid>https://orcid.org/0000000328167569</orcidid><orcidid>https://orcid.org/0000000257135534</orcidid></search><sort><creationdate>201902</creationdate><title>Characterization of surface layers formed on DU10Mo ingots after processing steps and high humidity exposure</title><author>Kaspar, Tiffany C. ; Arendt, Christina L. ; Neal, Derek L. ; Riechers, Shawn L. ; Rutherford, Crystal ; Schemer-Kohrn, Alan ; Spurgeon, Steven R. ; Sweet, Lucas E. ; Joshi, Vineet V. ; Lavender, Curt A. ; Shimskey, Rick W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-eb5eab2597a438cff11880998a7cf9cb851aeac5e5826b67f278ec3f41f89c3a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acid etch</topic><topic>Acids</topic><topic>Air exposure</topic><topic>Atomic force microscopy</topic><topic>Barrier layers</topic><topic>Cladding</topic><topic>Cold rolling</topic><topic>Corrosion</topic><topic>Electropolish</topic><topic>Etching</topic><topic>Exposure</topic><topic>Foils</topic><topic>Hot rolling</topic><topic>Humidity</topic><topic>Ingots</topic><topic>Interfacial properties</topic><topic>Microscopy</topic><topic>Molybdenum</topic><topic>Morphology</topic><topic>Nitrides</topic><topic>Nuclear fuel elements</topic><topic>Nuclear fuels</topic><topic>Oxidation</topic><topic>Oxides</topic><topic>Photoelectron spectroscopy</topic><topic>Photoelectrons</topic><topic>Relative humidity</topic><topic>Scanning electron microscopy</topic><topic>Sulfuric acid</topic><topic>Surface layers</topic><topic>Surface oxide</topic><topic>Surface roughness</topic><topic>U-Mo</topic><topic>Uranium</topic><topic>USHPRR</topic><topic>Valence</topic><topic>XPS</topic><topic>Zirconium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kaspar, Tiffany C.</creatorcontrib><creatorcontrib>Arendt, Christina L.</creatorcontrib><creatorcontrib>Neal, Derek L.</creatorcontrib><creatorcontrib>Riechers, Shawn L.</creatorcontrib><creatorcontrib>Rutherford, Crystal</creatorcontrib><creatorcontrib>Schemer-Kohrn, Alan</creatorcontrib><creatorcontrib>Spurgeon, Steven R.</creatorcontrib><creatorcontrib>Sweet, Lucas E.</creatorcontrib><creatorcontrib>Joshi, Vineet V.</creatorcontrib><creatorcontrib>Lavender, Curt A.</creatorcontrib><creatorcontrib>Shimskey, Rick W.</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>OSTI.GOV</collection><jtitle>Journal of nuclear materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaspar, Tiffany C.</au><au>Arendt, Christina L.</au><au>Neal, Derek L.</au><au>Riechers, Shawn L.</au><au>Rutherford, Crystal</au><au>Schemer-Kohrn, Alan</au><au>Spurgeon, Steven R.</au><au>Sweet, Lucas E.</au><au>Joshi, Vineet V.</au><au>Lavender, Curt A.</au><au>Shimskey, Rick W.</au><aucorp>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of surface layers formed on DU10Mo ingots after processing steps and high humidity exposure</atitle><jtitle>Journal of nuclear materials</jtitle><date>2019-02</date><risdate>2019</risdate><volume>514</volume><issue>C</issue><spage>28</spage><epage>39</epage><pages>28-39</pages><issn>0022-3115</issn><eissn>1873-4820</eissn><abstract>The design of monolithic UMo fuel elements fabricated from low-enriched uranium for use in high-power research reactors requires bonding of the fuel foil to either Al cladding or a Zr barrier layer. Processing of the UMo ingot to final foil form has the potential to generate surface layers on the foil that differ from the bulk, metallic UMo. The interfacial properties between the UMo and Zr or Al cladding layers will then be determined by these surface layers. We use x-ray photoelectron spectroscopy, cross-sectional scanning electron microscopy, and atomic force microscopy to characterize the composition, oxidation state, and morphology of the surface layers that form after hot rolling and cold rolling depleted U–10 wt% Mo alloy (DU10Mo). A thick uranium nitride layer is observed after hot rolling, although its origin is likely from a previous processing step. The efficacy of acid etching in HNO3 is compared to that of electropolishing in H2SO4 to remove surface nitride and oxide layers, and both methods are found to be similarly effective. Both laboratory (low humidity) air exposure and longer rinse times in water are shown to promote the formation of surface oxide layers. Exposure of both acid-etched and electropolished DU10Mo foils to humid air (97% relative humidity) for six weeks results in formation of a thick oxide layer due to corrosion. The oxide layer on the acid-etched foil is thicker and more highly oxidized than the oxide layer that forms on the electropolished foil, and these differences in oxidation behavior are attributed to higher surface roughness on the acid-etched foil. In general, Mo is found to play a role as a sacrificial element, typically exhibiting a larger ratio of Mo6+/Mo4+ than U6+/U4+. This is unexpected, given the greater thermodynamic driving force to form U oxides than Mo oxides. •Surface characterization of monolithic UMo fuel elements.•Efficacy of acid etching vs. electropolishing to remove surface oxide.•Characterized by x-ray photoelectron spectroscopy and scanning electron microscopy.•Surface roughness enhances oxidation in high humidity environment.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jnucmat.2018.11.022</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5713-5534</orcidid><orcidid>https://orcid.org/0000-0003-1218-839X</orcidid><orcidid>https://orcid.org/0000-0003-2816-7569</orcidid><orcidid>https://orcid.org/000000031218839X</orcidid><orcidid>https://orcid.org/0000000328167569</orcidid><orcidid>https://orcid.org/0000000257135534</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-3115
ispartof Journal of nuclear materials, 2019-02, Vol.514 (C), p.28-39
issn 0022-3115
1873-4820
language eng
recordid cdi_osti_scitechconnect_1496823
source ScienceDirect Freedom Collection 2022-2024
subjects Acid etch
Acids
Air exposure
Atomic force microscopy
Barrier layers
Cladding
Cold rolling
Corrosion
Electropolish
Etching
Exposure
Foils
Hot rolling
Humidity
Ingots
Interfacial properties
Microscopy
Molybdenum
Morphology
Nitrides
Nuclear fuel elements
Nuclear fuels
Oxidation
Oxides
Photoelectron spectroscopy
Photoelectrons
Relative humidity
Scanning electron microscopy
Sulfuric acid
Surface layers
Surface oxide
Surface roughness
U-Mo
Uranium
USHPRR
Valence
XPS
Zirconium
title Characterization of surface layers formed on DU10Mo ingots after processing steps and high humidity exposure
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T10%3A59%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20surface%20layers%20formed%20on%20DU10Mo%20ingots%20after%20processing%20steps%20and%20high%20humidity%20exposure&rft.jtitle=Journal%20of%20nuclear%20materials&rft.au=Kaspar,%20Tiffany%20C.&rft.aucorp=Pacific%20Northwest%20National%20Lab.%20(PNNL),%20Richland,%20WA%20(United%20States)&rft.date=2019-02&rft.volume=514&rft.issue=C&rft.spage=28&rft.epage=39&rft.pages=28-39&rft.issn=0022-3115&rft.eissn=1873-4820&rft_id=info:doi/10.1016/j.jnucmat.2018.11.022&rft_dat=%3Cproquest_osti_%3E2181757247%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c411t-eb5eab2597a438cff11880998a7cf9cb851aeac5e5826b67f278ec3f41f89c3a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2181757247&rft_id=info:pmid/&rfr_iscdi=true