Loading…

Si photocathode with Ag-supported dendritic Cu catalyst for CO 2 reduction

Si photocathodes integrated with Ag-supported dendritic Cu catalysts are used to perform light-driven reduction of CO 2 to C 2 and C 3 products in aqueous solution. A back illumination geometry with an n-type Si absorber was used to permit the use of absorbing metallic catalysts. Selective carrier c...

Full description

Saved in:
Bibliographic Details
Published in:Energy & environmental science 2019-03, Vol.12 (3), p.1068-1077
Main Authors: Gurudayal, Gurudayal, Beeman, Jeffrey W., Bullock, James, Wang, Hao, Eichhorn, Johanna, Towle, Clarissa, Javey, Ali, Toma, Francesca M., Mathews, Nripan, Ager, Joel W.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c1030-8b3df308beff43c5ec94e834746126eb7d02bbc10039503c846800267c1957f03
cites cdi_FETCH-LOGICAL-c1030-8b3df308beff43c5ec94e834746126eb7d02bbc10039503c846800267c1957f03
container_end_page 1077
container_issue 3
container_start_page 1068
container_title Energy & environmental science
container_volume 12
creator Gurudayal, Gurudayal
Beeman, Jeffrey W.
Bullock, James
Wang, Hao
Eichhorn, Johanna
Towle, Clarissa
Javey, Ali
Toma, Francesca M.
Mathews, Nripan
Ager, Joel W.
description Si photocathodes integrated with Ag-supported dendritic Cu catalysts are used to perform light-driven reduction of CO 2 to C 2 and C 3 products in aqueous solution. A back illumination geometry with an n-type Si absorber was used to permit the use of absorbing metallic catalysts. Selective carrier collection was accomplished by a p + implantation on the illumination side and an n + implantation followed by atomic layer deposition of TiO 2 on the electrolyte site. The Ag-supported dendritic Cu CO 2 reduction catalyst was formed by evaporation of Ag followed by high-rate electrodeposition of Cu to form a high surface area structure. Under simulated 1 sun illumination in 0.1 M CsHCO 3 saturated with CO 2 , the photovoltage generated by the Si (∼600 mV) enables C 2 and C 3 products to be produced at −0.4 vs. RHE. Texturing of both sides of the Si increases the light-limited current density, due to reduced reflection on the illumination side, and also deceases the onset potential. Under simulated diurnal illumination conditions photocathodes maintain over 60% faradaic efficiency to hydrocarbon and oxygenate products (mainly ethylene, ethanol, propanol) for several days. After 10 days of testing, contamination from the counter electrode is observed, which causes an increase in hydrogen production. This effect is mitigated by a regeneration procedure which restores the original catalyst selectivity. A tandem, self-powered CO 2 reduction device was formed by coupling a Si photocathode with two series-connected semitransparent CH 3 NH 3 PbI 3 perovskite solar cells, achieving an efficiency for the conversion of sunlight to hydrocarbons and oxygenates of 1.5% (3.5% for all products).
doi_str_mv 10.1039/C8EE03547D
format article
fullrecord <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1496890</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1039_C8EE03547D</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1030-8b3df308beff43c5ec94e834746126eb7d02bbc10039503c846800267c1957f03</originalsourceid><addsrcrecordid>eNpFkEtLAzEcxIMoWKsXP0HwKKz-s8nmcSxr64NCD-p52c3DjdTNkqRIv71bqniaOfwYZgahawJ3BKi6r-VyCbRi4uEEzYioWFEJ4Kd_nqvyHF2k9AnASxBqhl5ePR77kINucx-Mxd8-93jxUaTdOIaYrcHGDib67DWud3jC2u0-ZexCxPUGlzhas9PZh-ESnbl2m-zVr87R-2r5Vj8V683jc71YF3qqCIXsqHEUZGedY1RXVitmJWWCcVJy2wkDZddN7LSnAqol4xKg5EITVQkHdI5ujrkhZd8k7bPVvQ7DYHVuCFNcqgN0e4R0DClF65ox-q827hsCzeGq5v8q-gMeb1ma</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Si photocathode with Ag-supported dendritic Cu catalyst for CO 2 reduction</title><source>Royal Society of Chemistry</source><creator>Gurudayal, Gurudayal ; Beeman, Jeffrey W. ; Bullock, James ; Wang, Hao ; Eichhorn, Johanna ; Towle, Clarissa ; Javey, Ali ; Toma, Francesca M. ; Mathews, Nripan ; Ager, Joel W.</creator><creatorcontrib>Gurudayal, Gurudayal ; Beeman, Jeffrey W. ; Bullock, James ; Wang, Hao ; Eichhorn, Johanna ; Towle, Clarissa ; Javey, Ali ; Toma, Francesca M. ; Mathews, Nripan ; Ager, Joel W.</creatorcontrib><description>Si photocathodes integrated with Ag-supported dendritic Cu catalysts are used to perform light-driven reduction of CO 2 to C 2 and C 3 products in aqueous solution. A back illumination geometry with an n-type Si absorber was used to permit the use of absorbing metallic catalysts. Selective carrier collection was accomplished by a p + implantation on the illumination side and an n + implantation followed by atomic layer deposition of TiO 2 on the electrolyte site. The Ag-supported dendritic Cu CO 2 reduction catalyst was formed by evaporation of Ag followed by high-rate electrodeposition of Cu to form a high surface area structure. Under simulated 1 sun illumination in 0.1 M CsHCO 3 saturated with CO 2 , the photovoltage generated by the Si (∼600 mV) enables C 2 and C 3 products to be produced at −0.4 vs. RHE. Texturing of both sides of the Si increases the light-limited current density, due to reduced reflection on the illumination side, and also deceases the onset potential. Under simulated diurnal illumination conditions photocathodes maintain over 60% faradaic efficiency to hydrocarbon and oxygenate products (mainly ethylene, ethanol, propanol) for several days. After 10 days of testing, contamination from the counter electrode is observed, which causes an increase in hydrogen production. This effect is mitigated by a regeneration procedure which restores the original catalyst selectivity. A tandem, self-powered CO 2 reduction device was formed by coupling a Si photocathode with two series-connected semitransparent CH 3 NH 3 PbI 3 perovskite solar cells, achieving an efficiency for the conversion of sunlight to hydrocarbons and oxygenates of 1.5% (3.5% for all products).</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/C8EE03547D</identifier><language>eng</language><publisher>United Kingdom: Royal Society of Chemistry (RSC)</publisher><ispartof>Energy &amp; environmental science, 2019-03, Vol.12 (3), p.1068-1077</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1030-8b3df308beff43c5ec94e834746126eb7d02bbc10039503c846800267c1957f03</citedby><cites>FETCH-LOGICAL-c1030-8b3df308beff43c5ec94e834746126eb7d02bbc10039503c846800267c1957f03</cites><orcidid>0000-0002-2494-1409 ; 0000-0003-0037-4523 ; 0000-0001-7214-7931 ; 0000-0002-5678-6255 ; 0000-0003-2332-0798 ; 0000-0002-9245-2199 ; 0000-0001-5234-0822 ; 0000-0001-9334-9751 ; 0000-0001-7903-9642 ; 0000000292452199 ; 0000000300374523 ; 0000000179039642 ; 0000000256786255 ; 0000000224941409 ; 0000000323320798 ; 0000000193349751 ; 0000000172147931 ; 0000000152340822</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1496890$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Gurudayal, Gurudayal</creatorcontrib><creatorcontrib>Beeman, Jeffrey W.</creatorcontrib><creatorcontrib>Bullock, James</creatorcontrib><creatorcontrib>Wang, Hao</creatorcontrib><creatorcontrib>Eichhorn, Johanna</creatorcontrib><creatorcontrib>Towle, Clarissa</creatorcontrib><creatorcontrib>Javey, Ali</creatorcontrib><creatorcontrib>Toma, Francesca M.</creatorcontrib><creatorcontrib>Mathews, Nripan</creatorcontrib><creatorcontrib>Ager, Joel W.</creatorcontrib><title>Si photocathode with Ag-supported dendritic Cu catalyst for CO 2 reduction</title><title>Energy &amp; environmental science</title><description>Si photocathodes integrated with Ag-supported dendritic Cu catalysts are used to perform light-driven reduction of CO 2 to C 2 and C 3 products in aqueous solution. A back illumination geometry with an n-type Si absorber was used to permit the use of absorbing metallic catalysts. Selective carrier collection was accomplished by a p + implantation on the illumination side and an n + implantation followed by atomic layer deposition of TiO 2 on the electrolyte site. The Ag-supported dendritic Cu CO 2 reduction catalyst was formed by evaporation of Ag followed by high-rate electrodeposition of Cu to form a high surface area structure. Under simulated 1 sun illumination in 0.1 M CsHCO 3 saturated with CO 2 , the photovoltage generated by the Si (∼600 mV) enables C 2 and C 3 products to be produced at −0.4 vs. RHE. Texturing of both sides of the Si increases the light-limited current density, due to reduced reflection on the illumination side, and also deceases the onset potential. Under simulated diurnal illumination conditions photocathodes maintain over 60% faradaic efficiency to hydrocarbon and oxygenate products (mainly ethylene, ethanol, propanol) for several days. After 10 days of testing, contamination from the counter electrode is observed, which causes an increase in hydrogen production. This effect is mitigated by a regeneration procedure which restores the original catalyst selectivity. A tandem, self-powered CO 2 reduction device was formed by coupling a Si photocathode with two series-connected semitransparent CH 3 NH 3 PbI 3 perovskite solar cells, achieving an efficiency for the conversion of sunlight to hydrocarbons and oxygenates of 1.5% (3.5% for all products).</description><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpFkEtLAzEcxIMoWKsXP0HwKKz-s8nmcSxr64NCD-p52c3DjdTNkqRIv71bqniaOfwYZgahawJ3BKi6r-VyCbRi4uEEzYioWFEJ4Kd_nqvyHF2k9AnASxBqhl5ePR77kINucx-Mxd8-93jxUaTdOIaYrcHGDib67DWud3jC2u0-ZexCxPUGlzhas9PZh-ESnbl2m-zVr87R-2r5Vj8V683jc71YF3qqCIXsqHEUZGedY1RXVitmJWWCcVJy2wkDZddN7LSnAqol4xKg5EITVQkHdI5ujrkhZd8k7bPVvQ7DYHVuCFNcqgN0e4R0DClF65ox-q827hsCzeGq5v8q-gMeb1ma</recordid><startdate>20190313</startdate><enddate>20190313</enddate><creator>Gurudayal, Gurudayal</creator><creator>Beeman, Jeffrey W.</creator><creator>Bullock, James</creator><creator>Wang, Hao</creator><creator>Eichhorn, Johanna</creator><creator>Towle, Clarissa</creator><creator>Javey, Ali</creator><creator>Toma, Francesca M.</creator><creator>Mathews, Nripan</creator><creator>Ager, Joel W.</creator><general>Royal Society of Chemistry (RSC)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-2494-1409</orcidid><orcidid>https://orcid.org/0000-0003-0037-4523</orcidid><orcidid>https://orcid.org/0000-0001-7214-7931</orcidid><orcidid>https://orcid.org/0000-0002-5678-6255</orcidid><orcidid>https://orcid.org/0000-0003-2332-0798</orcidid><orcidid>https://orcid.org/0000-0002-9245-2199</orcidid><orcidid>https://orcid.org/0000-0001-5234-0822</orcidid><orcidid>https://orcid.org/0000-0001-9334-9751</orcidid><orcidid>https://orcid.org/0000-0001-7903-9642</orcidid><orcidid>https://orcid.org/0000000292452199</orcidid><orcidid>https://orcid.org/0000000300374523</orcidid><orcidid>https://orcid.org/0000000179039642</orcidid><orcidid>https://orcid.org/0000000256786255</orcidid><orcidid>https://orcid.org/0000000224941409</orcidid><orcidid>https://orcid.org/0000000323320798</orcidid><orcidid>https://orcid.org/0000000193349751</orcidid><orcidid>https://orcid.org/0000000172147931</orcidid><orcidid>https://orcid.org/0000000152340822</orcidid></search><sort><creationdate>20190313</creationdate><title>Si photocathode with Ag-supported dendritic Cu catalyst for CO 2 reduction</title><author>Gurudayal, Gurudayal ; Beeman, Jeffrey W. ; Bullock, James ; Wang, Hao ; Eichhorn, Johanna ; Towle, Clarissa ; Javey, Ali ; Toma, Francesca M. ; Mathews, Nripan ; Ager, Joel W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1030-8b3df308beff43c5ec94e834746126eb7d02bbc10039503c846800267c1957f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gurudayal, Gurudayal</creatorcontrib><creatorcontrib>Beeman, Jeffrey W.</creatorcontrib><creatorcontrib>Bullock, James</creatorcontrib><creatorcontrib>Wang, Hao</creatorcontrib><creatorcontrib>Eichhorn, Johanna</creatorcontrib><creatorcontrib>Towle, Clarissa</creatorcontrib><creatorcontrib>Javey, Ali</creatorcontrib><creatorcontrib>Toma, Francesca M.</creatorcontrib><creatorcontrib>Mathews, Nripan</creatorcontrib><creatorcontrib>Ager, Joel W.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Energy &amp; environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gurudayal, Gurudayal</au><au>Beeman, Jeffrey W.</au><au>Bullock, James</au><au>Wang, Hao</au><au>Eichhorn, Johanna</au><au>Towle, Clarissa</au><au>Javey, Ali</au><au>Toma, Francesca M.</au><au>Mathews, Nripan</au><au>Ager, Joel W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Si photocathode with Ag-supported dendritic Cu catalyst for CO 2 reduction</atitle><jtitle>Energy &amp; environmental science</jtitle><date>2019-03-13</date><risdate>2019</risdate><volume>12</volume><issue>3</issue><spage>1068</spage><epage>1077</epage><pages>1068-1077</pages><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>Si photocathodes integrated with Ag-supported dendritic Cu catalysts are used to perform light-driven reduction of CO 2 to C 2 and C 3 products in aqueous solution. A back illumination geometry with an n-type Si absorber was used to permit the use of absorbing metallic catalysts. Selective carrier collection was accomplished by a p + implantation on the illumination side and an n + implantation followed by atomic layer deposition of TiO 2 on the electrolyte site. The Ag-supported dendritic Cu CO 2 reduction catalyst was formed by evaporation of Ag followed by high-rate electrodeposition of Cu to form a high surface area structure. Under simulated 1 sun illumination in 0.1 M CsHCO 3 saturated with CO 2 , the photovoltage generated by the Si (∼600 mV) enables C 2 and C 3 products to be produced at −0.4 vs. RHE. Texturing of both sides of the Si increases the light-limited current density, due to reduced reflection on the illumination side, and also deceases the onset potential. Under simulated diurnal illumination conditions photocathodes maintain over 60% faradaic efficiency to hydrocarbon and oxygenate products (mainly ethylene, ethanol, propanol) for several days. After 10 days of testing, contamination from the counter electrode is observed, which causes an increase in hydrogen production. This effect is mitigated by a regeneration procedure which restores the original catalyst selectivity. A tandem, self-powered CO 2 reduction device was formed by coupling a Si photocathode with two series-connected semitransparent CH 3 NH 3 PbI 3 perovskite solar cells, achieving an efficiency for the conversion of sunlight to hydrocarbons and oxygenates of 1.5% (3.5% for all products).</abstract><cop>United Kingdom</cop><pub>Royal Society of Chemistry (RSC)</pub><doi>10.1039/C8EE03547D</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2494-1409</orcidid><orcidid>https://orcid.org/0000-0003-0037-4523</orcidid><orcidid>https://orcid.org/0000-0001-7214-7931</orcidid><orcidid>https://orcid.org/0000-0002-5678-6255</orcidid><orcidid>https://orcid.org/0000-0003-2332-0798</orcidid><orcidid>https://orcid.org/0000-0002-9245-2199</orcidid><orcidid>https://orcid.org/0000-0001-5234-0822</orcidid><orcidid>https://orcid.org/0000-0001-9334-9751</orcidid><orcidid>https://orcid.org/0000-0001-7903-9642</orcidid><orcidid>https://orcid.org/0000000292452199</orcidid><orcidid>https://orcid.org/0000000300374523</orcidid><orcidid>https://orcid.org/0000000179039642</orcidid><orcidid>https://orcid.org/0000000256786255</orcidid><orcidid>https://orcid.org/0000000224941409</orcidid><orcidid>https://orcid.org/0000000323320798</orcidid><orcidid>https://orcid.org/0000000193349751</orcidid><orcidid>https://orcid.org/0000000172147931</orcidid><orcidid>https://orcid.org/0000000152340822</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1754-5692
ispartof Energy & environmental science, 2019-03, Vol.12 (3), p.1068-1077
issn 1754-5692
1754-5706
language eng
recordid cdi_osti_scitechconnect_1496890
source Royal Society of Chemistry
title Si photocathode with Ag-supported dendritic Cu catalyst for CO 2 reduction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T13%3A58%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Si%20photocathode%20with%20Ag-supported%20dendritic%20Cu%20catalyst%20for%20CO%202%20reduction&rft.jtitle=Energy%20&%20environmental%20science&rft.au=Gurudayal,%20Gurudayal&rft.date=2019-03-13&rft.volume=12&rft.issue=3&rft.spage=1068&rft.epage=1077&rft.pages=1068-1077&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/C8EE03547D&rft_dat=%3Ccrossref_osti_%3E10_1039_C8EE03547D%3C/crossref_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1030-8b3df308beff43c5ec94e834746126eb7d02bbc10039503c846800267c1957f03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true