Loading…

A biopolymer‐based 3D printable hydrogel for toxic metal adsorption from water

Herein, we describe a 3D printable hydrogel that is capable of removing toxic metal pollutants from aqueous solution. To achieve this, shear‐thinning hydrogels were prepared by blending chitosan with diacrylated Pluronic F‐127 which allows for UV curing after printing. Several hydrogel compositions...

Full description

Saved in:
Bibliographic Details
Published in:Polymer international 2019-05, Vol.68 (5), p.964-971
Main Authors: Appuhamillage, Gayan A, Berry, Danielle R, Benjamin, Candace E, Luzuriaga, Michael A, Reagan, John C, Gassensmith, Jeremiah J, Smaldone, Ronald A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4127-8844bac6d43f54ae0372d3d62c3786a22bd6023d0551e2c32d9ee3d4a57d3c053
cites cdi_FETCH-LOGICAL-c4127-8844bac6d43f54ae0372d3d62c3786a22bd6023d0551e2c32d9ee3d4a57d3c053
container_end_page 971
container_issue 5
container_start_page 964
container_title Polymer international
container_volume 68
creator Appuhamillage, Gayan A
Berry, Danielle R
Benjamin, Candace E
Luzuriaga, Michael A
Reagan, John C
Gassensmith, Jeremiah J
Smaldone, Ronald A
description Herein, we describe a 3D printable hydrogel that is capable of removing toxic metal pollutants from aqueous solution. To achieve this, shear‐thinning hydrogels were prepared by blending chitosan with diacrylated Pluronic F‐127 which allows for UV curing after printing. Several hydrogel compositions were tested for their ability to absorb common metal pollutants such as lead, copper, cadmium and mercury, as well as for their printability. These hydrogels displayed excellent metal adsorption with some examples capable of up to 95% metal removal within 30 min. We show that 3D printed hydrogel structures that would be difficult to fabricate by conventional manufacturing methods can adsorb metal ions significantly faster than solid objects, owing to their higher accessible surface areas. © 2019 Society of Chemical Industry Here we report a 3D printable, bio‐based, hydrogel that is capable of removing toxic metals from aqueous solutions with improved adsorption kinetics compared to non‐3D‐printed shapes.
doi_str_mv 10.1002/pi.5787
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1500143</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2202758771</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4127-8844bac6d43f54ae0372d3d62c3786a22bd6023d0551e2c32d9ee3d4a57d3c053</originalsourceid><addsrcrecordid>eNp10MtKxTAQBuAgCh4v-ApBFy6kOkmapl3K8QqCLnQd0iTVSNvUJIdjdz6Cz-iTWK1bVwPDx8_Mj9ABgVMCQM8Gd8pFKTbQgkAlMiC02EQLqHiVlQTYNtqJ8RUAyqqqFujhHNfOD74dOxu-Pj5rFa3B7AIPwfVJ1a3FL6MJ_tm2uPEBJ__uNO5sUi1WJvowJOd73ATf4bVKNuyhrUa10e7_zV30dHX5uLzJ7u6vb5fnd5nOCRVZWeZ5rXRhctbwXFlgghpmCqqZKAtFaW0KoMwA58ROS2oqa5nJFReGaeBsFx3OuT4mJ6N2yeoX7fve6iQJByA5m9DRjIbg31Y2JvnqV6Gf7pKUAhW8FIJM6nhWOvgYg23k9HynwigJyJ9O5eDkT6eTPJnl2rV2_I_Jh9tf_Q1AwXZ7</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2202758771</pqid></control><display><type>article</type><title>A biopolymer‐based 3D printable hydrogel for toxic metal adsorption from water</title><source>Wiley</source><creator>Appuhamillage, Gayan A ; Berry, Danielle R ; Benjamin, Candace E ; Luzuriaga, Michael A ; Reagan, John C ; Gassensmith, Jeremiah J ; Smaldone, Ronald A</creator><creatorcontrib>Appuhamillage, Gayan A ; Berry, Danielle R ; Benjamin, Candace E ; Luzuriaga, Michael A ; Reagan, John C ; Gassensmith, Jeremiah J ; Smaldone, Ronald A</creatorcontrib><description>Herein, we describe a 3D printable hydrogel that is capable of removing toxic metal pollutants from aqueous solution. To achieve this, shear‐thinning hydrogels were prepared by blending chitosan with diacrylated Pluronic F‐127 which allows for UV curing after printing. Several hydrogel compositions were tested for their ability to absorb common metal pollutants such as lead, copper, cadmium and mercury, as well as for their printability. These hydrogels displayed excellent metal adsorption with some examples capable of up to 95% metal removal within 30 min. We show that 3D printed hydrogel structures that would be difficult to fabricate by conventional manufacturing methods can adsorb metal ions significantly faster than solid objects, owing to their higher accessible surface areas. © 2019 Society of Chemical Industry Here we report a 3D printable, bio‐based, hydrogel that is capable of removing toxic metals from aqueous solutions with improved adsorption kinetics compared to non‐3D‐printed shapes.</description><identifier>ISSN: 0959-8103</identifier><identifier>EISSN: 1097-0126</identifier><identifier>DOI: 10.1002/pi.5787</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>3D printing ; Adsorption ; Aqueous solutions ; biopolymer ; Biopolymers ; Cadmium ; Chitosan ; Copper ; Hydrogels ; Lead ; Mercury ; Mercury (metal) ; Metal ions ; Organic chemistry ; Pollutants ; Production methods ; Three dimensional printing ; water purification</subject><ispartof>Polymer international, 2019-05, Vol.68 (5), p.964-971</ispartof><rights>2019 Society of Chemical Industry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4127-8844bac6d43f54ae0372d3d62c3786a22bd6023d0551e2c32d9ee3d4a57d3c053</citedby><cites>FETCH-LOGICAL-c4127-8844bac6d43f54ae0372d3d62c3786a22bd6023d0551e2c32d9ee3d4a57d3c053</cites><orcidid>0000-0003-4560-7079 ; 0000-0002-9211-718X ; 0000-0003-4165-8741 ; 0000-0001-6128-8800 ; 0000-0003-0198-5414 ; 0000-0001-6400-8106 ; 0000000164008106 ; 0000000301985414 ; 0000000341658741 ; 000000029211718X ; 0000000345607079 ; 0000000161288800</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1500143$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Appuhamillage, Gayan A</creatorcontrib><creatorcontrib>Berry, Danielle R</creatorcontrib><creatorcontrib>Benjamin, Candace E</creatorcontrib><creatorcontrib>Luzuriaga, Michael A</creatorcontrib><creatorcontrib>Reagan, John C</creatorcontrib><creatorcontrib>Gassensmith, Jeremiah J</creatorcontrib><creatorcontrib>Smaldone, Ronald A</creatorcontrib><title>A biopolymer‐based 3D printable hydrogel for toxic metal adsorption from water</title><title>Polymer international</title><description>Herein, we describe a 3D printable hydrogel that is capable of removing toxic metal pollutants from aqueous solution. To achieve this, shear‐thinning hydrogels were prepared by blending chitosan with diacrylated Pluronic F‐127 which allows for UV curing after printing. Several hydrogel compositions were tested for their ability to absorb common metal pollutants such as lead, copper, cadmium and mercury, as well as for their printability. These hydrogels displayed excellent metal adsorption with some examples capable of up to 95% metal removal within 30 min. We show that 3D printed hydrogel structures that would be difficult to fabricate by conventional manufacturing methods can adsorb metal ions significantly faster than solid objects, owing to their higher accessible surface areas. © 2019 Society of Chemical Industry Here we report a 3D printable, bio‐based, hydrogel that is capable of removing toxic metals from aqueous solutions with improved adsorption kinetics compared to non‐3D‐printed shapes.</description><subject>3D printing</subject><subject>Adsorption</subject><subject>Aqueous solutions</subject><subject>biopolymer</subject><subject>Biopolymers</subject><subject>Cadmium</subject><subject>Chitosan</subject><subject>Copper</subject><subject>Hydrogels</subject><subject>Lead</subject><subject>Mercury</subject><subject>Mercury (metal)</subject><subject>Metal ions</subject><subject>Organic chemistry</subject><subject>Pollutants</subject><subject>Production methods</subject><subject>Three dimensional printing</subject><subject>water purification</subject><issn>0959-8103</issn><issn>1097-0126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp10MtKxTAQBuAgCh4v-ApBFy6kOkmapl3K8QqCLnQd0iTVSNvUJIdjdz6Cz-iTWK1bVwPDx8_Mj9ABgVMCQM8Gd8pFKTbQgkAlMiC02EQLqHiVlQTYNtqJ8RUAyqqqFujhHNfOD74dOxu-Pj5rFa3B7AIPwfVJ1a3FL6MJ_tm2uPEBJ__uNO5sUi1WJvowJOd73ATf4bVKNuyhrUa10e7_zV30dHX5uLzJ7u6vb5fnd5nOCRVZWeZ5rXRhctbwXFlgghpmCqqZKAtFaW0KoMwA58ROS2oqa5nJFReGaeBsFx3OuT4mJ6N2yeoX7fve6iQJByA5m9DRjIbg31Y2JvnqV6Gf7pKUAhW8FIJM6nhWOvgYg23k9HynwigJyJ9O5eDkT6eTPJnl2rV2_I_Jh9tf_Q1AwXZ7</recordid><startdate>201905</startdate><enddate>201905</enddate><creator>Appuhamillage, Gayan A</creator><creator>Berry, Danielle R</creator><creator>Benjamin, Candace E</creator><creator>Luzuriaga, Michael A</creator><creator>Reagan, John C</creator><creator>Gassensmith, Jeremiah J</creator><creator>Smaldone, Ronald A</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><general>Wiley Blackwell (John Wiley &amp; Sons)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-4560-7079</orcidid><orcidid>https://orcid.org/0000-0002-9211-718X</orcidid><orcidid>https://orcid.org/0000-0003-4165-8741</orcidid><orcidid>https://orcid.org/0000-0001-6128-8800</orcidid><orcidid>https://orcid.org/0000-0003-0198-5414</orcidid><orcidid>https://orcid.org/0000-0001-6400-8106</orcidid><orcidid>https://orcid.org/0000000164008106</orcidid><orcidid>https://orcid.org/0000000301985414</orcidid><orcidid>https://orcid.org/0000000341658741</orcidid><orcidid>https://orcid.org/000000029211718X</orcidid><orcidid>https://orcid.org/0000000345607079</orcidid><orcidid>https://orcid.org/0000000161288800</orcidid></search><sort><creationdate>201905</creationdate><title>A biopolymer‐based 3D printable hydrogel for toxic metal adsorption from water</title><author>Appuhamillage, Gayan A ; Berry, Danielle R ; Benjamin, Candace E ; Luzuriaga, Michael A ; Reagan, John C ; Gassensmith, Jeremiah J ; Smaldone, Ronald A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4127-8844bac6d43f54ae0372d3d62c3786a22bd6023d0551e2c32d9ee3d4a57d3c053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>3D printing</topic><topic>Adsorption</topic><topic>Aqueous solutions</topic><topic>biopolymer</topic><topic>Biopolymers</topic><topic>Cadmium</topic><topic>Chitosan</topic><topic>Copper</topic><topic>Hydrogels</topic><topic>Lead</topic><topic>Mercury</topic><topic>Mercury (metal)</topic><topic>Metal ions</topic><topic>Organic chemistry</topic><topic>Pollutants</topic><topic>Production methods</topic><topic>Three dimensional printing</topic><topic>water purification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Appuhamillage, Gayan A</creatorcontrib><creatorcontrib>Berry, Danielle R</creatorcontrib><creatorcontrib>Benjamin, Candace E</creatorcontrib><creatorcontrib>Luzuriaga, Michael A</creatorcontrib><creatorcontrib>Reagan, John C</creatorcontrib><creatorcontrib>Gassensmith, Jeremiah J</creatorcontrib><creatorcontrib>Smaldone, Ronald A</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>OSTI.GOV</collection><jtitle>Polymer international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Appuhamillage, Gayan A</au><au>Berry, Danielle R</au><au>Benjamin, Candace E</au><au>Luzuriaga, Michael A</au><au>Reagan, John C</au><au>Gassensmith, Jeremiah J</au><au>Smaldone, Ronald A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A biopolymer‐based 3D printable hydrogel for toxic metal adsorption from water</atitle><jtitle>Polymer international</jtitle><date>2019-05</date><risdate>2019</risdate><volume>68</volume><issue>5</issue><spage>964</spage><epage>971</epage><pages>964-971</pages><issn>0959-8103</issn><eissn>1097-0126</eissn><abstract>Herein, we describe a 3D printable hydrogel that is capable of removing toxic metal pollutants from aqueous solution. To achieve this, shear‐thinning hydrogels were prepared by blending chitosan with diacrylated Pluronic F‐127 which allows for UV curing after printing. Several hydrogel compositions were tested for their ability to absorb common metal pollutants such as lead, copper, cadmium and mercury, as well as for their printability. These hydrogels displayed excellent metal adsorption with some examples capable of up to 95% metal removal within 30 min. We show that 3D printed hydrogel structures that would be difficult to fabricate by conventional manufacturing methods can adsorb metal ions significantly faster than solid objects, owing to their higher accessible surface areas. © 2019 Society of Chemical Industry Here we report a 3D printable, bio‐based, hydrogel that is capable of removing toxic metals from aqueous solutions with improved adsorption kinetics compared to non‐3D‐printed shapes.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/pi.5787</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-4560-7079</orcidid><orcidid>https://orcid.org/0000-0002-9211-718X</orcidid><orcidid>https://orcid.org/0000-0003-4165-8741</orcidid><orcidid>https://orcid.org/0000-0001-6128-8800</orcidid><orcidid>https://orcid.org/0000-0003-0198-5414</orcidid><orcidid>https://orcid.org/0000-0001-6400-8106</orcidid><orcidid>https://orcid.org/0000000164008106</orcidid><orcidid>https://orcid.org/0000000301985414</orcidid><orcidid>https://orcid.org/0000000341658741</orcidid><orcidid>https://orcid.org/000000029211718X</orcidid><orcidid>https://orcid.org/0000000345607079</orcidid><orcidid>https://orcid.org/0000000161288800</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0959-8103
ispartof Polymer international, 2019-05, Vol.68 (5), p.964-971
issn 0959-8103
1097-0126
language eng
recordid cdi_osti_scitechconnect_1500143
source Wiley
subjects 3D printing
Adsorption
Aqueous solutions
biopolymer
Biopolymers
Cadmium
Chitosan
Copper
Hydrogels
Lead
Mercury
Mercury (metal)
Metal ions
Organic chemistry
Pollutants
Production methods
Three dimensional printing
water purification
title A biopolymer‐based 3D printable hydrogel for toxic metal adsorption from water
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T19%3A32%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20biopolymer%E2%80%90based%203D%20printable%20hydrogel%20for%20toxic%20metal%20adsorption%20from%20water&rft.jtitle=Polymer%20international&rft.au=Appuhamillage,%20Gayan%20A&rft.date=2019-05&rft.volume=68&rft.issue=5&rft.spage=964&rft.epage=971&rft.pages=964-971&rft.issn=0959-8103&rft.eissn=1097-0126&rft_id=info:doi/10.1002/pi.5787&rft_dat=%3Cproquest_osti_%3E2202758771%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4127-8844bac6d43f54ae0372d3d62c3786a22bd6023d0551e2c32d9ee3d4a57d3c053%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2202758771&rft_id=info:pmid/&rfr_iscdi=true