Loading…

Fischer–Tropsch synthesis: characterization and catalytic properties of rhenium promoted cobalt alumina catalysts

The unpromoted and promoted Fischer–Tropsch synthesis (FTS) catalysts were characterized using techniques such as X-ray diffraction (XRD), temperature programmed reduction (TPR), X-ray absorption spectroscopy (XAS), Brunauer–Emmett–Teller surface area (BET SA), hydrogen chemisorption and catalytic a...

Full description

Saved in:
Bibliographic Details
Published in:Fuel (Guildford) 2003-05, Vol.82 (7), p.805-815
Main Authors: Das, Tapan K, Jacobs, Gary, Patterson, Patricia M, Conner, Whitney A, Li, Jinlin, Davis, Burtron H
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The unpromoted and promoted Fischer–Tropsch synthesis (FTS) catalysts were characterized using techniques such as X-ray diffraction (XRD), temperature programmed reduction (TPR), X-ray absorption spectroscopy (XAS), Brunauer–Emmett–Teller surface area (BET SA), hydrogen chemisorption and catalytic activity using a continuously stirred tank reactor (CSTR). The addition of small amounts of rhenium to a 15% Co/Al 2O 3 catalyst decreased the reduction temperature of cobalt oxide but the percent dispersion and cluster size, based on the amount of reduced cobalt, did not change significantly. Samples of the catalyst were withdrawn at increasing time-on-stream from the reactor along with the wax and cooled to become embedded in the solid wax for XAS investigation. Extended X-ray absorption fine structure (EXAFS) data indicate significant cluster growth with time-on-stream suggesting a sintering process as a major source of the deactivation. Addition of rhenium increased the synthesis gas conversion, based on catalyst weight, but turnover frequencies calculated using sites from hydrogen adsorption and initial activity were similar. A wide range of synthesis gas conversion has been obtained by varying the space velocities over the catalysts.
ISSN:0016-2361
1873-7153
DOI:10.1016/S0016-2361(02)00361-7