Loading…

Transparent Ceramic Garnet Gamma-Ray Spectrometer With Directionality

We have developed a handheld \gamma -ray spectrometer based on 1024 pixels, 2.8\,\,\text {mm} \times 2.8\,\,\text {mm} \times 6 mm in size, of gadolinium-yttrium-gallium-aluminum garnet (GYGAG) ((Gd,Y,Ce) 3 (Ga,Al) 5 O 12 ) ceramic scintillator (total of 48-cm 3 detector volume) coupled to silico...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on nuclear science 2018-08, Vol.65 (8), p.2303-2309
Main Authors: Swanberg, Erik L., Cherepy, Nerine J., Wihl, Brian M., Beck, Patrick R., Seeley, Zachary M., Hunter, Steven L., Fisher, Scott E., Payne, Stephen A., Kindem, Joel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c360t-3068e1853e355e20ce8c9df667e473854788c495ddb10f7071c0132b87b56a863
cites cdi_FETCH-LOGICAL-c360t-3068e1853e355e20ce8c9df667e473854788c495ddb10f7071c0132b87b56a863
container_end_page 2309
container_issue 8
container_start_page 2303
container_title IEEE transactions on nuclear science
container_volume 65
creator Swanberg, Erik L.
Cherepy, Nerine J.
Wihl, Brian M.
Beck, Patrick R.
Seeley, Zachary M.
Hunter, Steven L.
Fisher, Scott E.
Payne, Stephen A.
Kindem, Joel
description We have developed a handheld \gamma -ray spectrometer based on 1024 pixels, 2.8\,\,\text {mm} \times 2.8\,\,\text {mm} \times 6 mm in size, of gadolinium-yttrium-gallium-aluminum garnet (GYGAG) ((Gd,Y,Ce) 3 (Ga,Al) 5 O 12 ) ceramic scintillator (total of 48-cm 3 detector volume) coupled to silicon photodiode (SiPD) arrays. The SiPD arrays and readout ASIC, originally developed for medical imaging applications, have been adapted for portability in a lightweight box with heatsink and thermoelectric cooling. Custom readout firmware for \gamma -ray spectroscopy has been implemented, and a system user interface was developed that runs on an Android tablet. We have optimized the processing of the GYGAG(Ce), the pixel optical coupling, and electronics readout parameters to obtain single pixel energy resolution as good as R (662\,\,\text {keV}) = 3.1 % full-width at half-maximum and full device resolution with singles events from all pixels summed of 4.5%. When Compton-summed events are included, full-energy peak efficiency increases by \sim 2\times , and R (662\,\,\text {keV}) = 4.7 % is obtained for the full device. The pixelated architecture is leveraged to locate point sources of radiological materials using Compton imaging and active masking techniques. Directional detection of a 1 mCi Cs-137 source at 10 m can be made to ±10° in ~2 s.
doi_str_mv 10.1109/TNS.2018.2853584
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1502033</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8409484</ieee_id><sourcerecordid>2090822165</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-3068e1853e355e20ce8c9df667e473854788c495ddb10f7071c0132b87b56a863</originalsourceid><addsrcrecordid>eNo9kM1LAzEQxYMoWKt3wcui562TZLObHKXWKhQFW_EY0nSWpnQ_TNJD_3sjWzwNM-_3hscj5JbChFJQj6v35YQBlRMmBReyOCMjKoTMqajkORlBknJVKHVJrkLYpbUQIEZktvKmDb3x2MZsit40zmZz41uMaTSNyT_NMVv2aKPvGozos28Xt9mz8-nkutbsXTxek4va7APenOaYfL3MVtPXfPExf5s-LXLLS4g5h1IiTfmQC4EMLEqrNnVZVlhUXIqiktIWSmw2awp1BRW1QDlby2otSiNLPib3w98uRKeDdRHt1nZtm7JoKoAB5wl6GKDedz8HDFHvuoNPQYNmoEAyRkuRKBgo67sQPNa6964x_qgp6L9GdWpU_zWqT40my91gcYj4j8sCVJHUX1P6b7o</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2090822165</pqid></control><display><type>article</type><title>Transparent Ceramic Garnet Gamma-Ray Spectrometer With Directionality</title><source>IEEE Xplore (Online service)</source><creator>Swanberg, Erik L. ; Cherepy, Nerine J. ; Wihl, Brian M. ; Beck, Patrick R. ; Seeley, Zachary M. ; Hunter, Steven L. ; Fisher, Scott E. ; Payne, Stephen A. ; Kindem, Joel</creator><creatorcontrib>Swanberg, Erik L. ; Cherepy, Nerine J. ; Wihl, Brian M. ; Beck, Patrick R. ; Seeley, Zachary M. ; Hunter, Steven L. ; Fisher, Scott E. ; Payne, Stephen A. ; Kindem, Joel ; Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><description><![CDATA[We have developed a handheld <inline-formula> <tex-math notation="LaTeX">\gamma </tex-math></inline-formula>-ray spectrometer based on 1024 pixels, <inline-formula> <tex-math notation="LaTeX">2.8\,\,\text {mm} \times 2.8\,\,\text {mm} \times 6 </tex-math></inline-formula> mm in size, of gadolinium-yttrium-gallium-aluminum garnet (GYGAG) ((Gd,Y,Ce) 3 (Ga,Al) 5 O 12 ) ceramic scintillator (total of 48-cm 3 detector volume) coupled to silicon photodiode (SiPD) arrays. The SiPD arrays and readout ASIC, originally developed for medical imaging applications, have been adapted for portability in a lightweight box with heatsink and thermoelectric cooling. Custom readout firmware for <inline-formula> <tex-math notation="LaTeX">\gamma </tex-math></inline-formula>-ray spectroscopy has been implemented, and a system user interface was developed that runs on an Android tablet. We have optimized the processing of the GYGAG(Ce), the pixel optical coupling, and electronics readout parameters to obtain single pixel energy resolution as good as <inline-formula> <tex-math notation="LaTeX">R (662\,\,\text {keV}) = 3.1 </tex-math></inline-formula>% full-width at half-maximum and full device resolution with singles events from all pixels summed of 4.5%. When Compton-summed events are included, full-energy peak efficiency increases by <inline-formula> <tex-math notation="LaTeX">\sim 2\times </tex-math></inline-formula>, and <inline-formula> <tex-math notation="LaTeX">R (662\,\,\text {keV}) = 4.7 </tex-math></inline-formula>% is obtained for the full device. The pixelated architecture is leveraged to locate point sources of radiological materials using Compton imaging and active masking techniques. Directional detection of a 1 mCi Cs-137 source at 10 m can be made to ±10° in ~2 s.]]></description><identifier>ISSN: 0018-9499</identifier><identifier>EISSN: 1558-1578</identifier><identifier>DOI: 10.1109/TNS.2018.2853584</identifier><identifier>CODEN: IETNAE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Acidity ; Active Mask ; Aluminum ; Ceramics ; Compton Imaging ; Energy resolution ; ENGINEERING ; Firmware ; Gadolinium ; gadolinium–yttrium gallium–aluminum garnet (GYGAG) ; Gamma Ray Spectrometer ; Gamma rays ; Garnet ; Garnets ; GYGAG ; Histograms ; INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY ; Masking ; Medical imaging ; Optical coupling ; Photodiodes ; Pixels ; Point sources ; Radiation Detector ; Radiation detectors ; Scintillation counters ; Scintillator ; Scintillators ; Sodium channels ; Spectroscopy ; Thermoelectric cooling</subject><ispartof>IEEE transactions on nuclear science, 2018-08, Vol.65 (8), p.2303-2309</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-3068e1853e355e20ce8c9df667e473854788c495ddb10f7071c0132b87b56a863</citedby><cites>FETCH-LOGICAL-c360t-3068e1853e355e20ce8c9df667e473854788c495ddb10f7071c0132b87b56a863</cites><orcidid>0000-0003-3810-9995 ; 0000-0001-8561-923X ; 0000-0003-2398-675X ; 000000018561923X ; 0000000338109995 ; 000000032398675X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8409484$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1502033$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Swanberg, Erik L.</creatorcontrib><creatorcontrib>Cherepy, Nerine J.</creatorcontrib><creatorcontrib>Wihl, Brian M.</creatorcontrib><creatorcontrib>Beck, Patrick R.</creatorcontrib><creatorcontrib>Seeley, Zachary M.</creatorcontrib><creatorcontrib>Hunter, Steven L.</creatorcontrib><creatorcontrib>Fisher, Scott E.</creatorcontrib><creatorcontrib>Payne, Stephen A.</creatorcontrib><creatorcontrib>Kindem, Joel</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><title>Transparent Ceramic Garnet Gamma-Ray Spectrometer With Directionality</title><title>IEEE transactions on nuclear science</title><addtitle>TNS</addtitle><description><![CDATA[We have developed a handheld <inline-formula> <tex-math notation="LaTeX">\gamma </tex-math></inline-formula>-ray spectrometer based on 1024 pixels, <inline-formula> <tex-math notation="LaTeX">2.8\,\,\text {mm} \times 2.8\,\,\text {mm} \times 6 </tex-math></inline-formula> mm in size, of gadolinium-yttrium-gallium-aluminum garnet (GYGAG) ((Gd,Y,Ce) 3 (Ga,Al) 5 O 12 ) ceramic scintillator (total of 48-cm 3 detector volume) coupled to silicon photodiode (SiPD) arrays. The SiPD arrays and readout ASIC, originally developed for medical imaging applications, have been adapted for portability in a lightweight box with heatsink and thermoelectric cooling. Custom readout firmware for <inline-formula> <tex-math notation="LaTeX">\gamma </tex-math></inline-formula>-ray spectroscopy has been implemented, and a system user interface was developed that runs on an Android tablet. We have optimized the processing of the GYGAG(Ce), the pixel optical coupling, and electronics readout parameters to obtain single pixel energy resolution as good as <inline-formula> <tex-math notation="LaTeX">R (662\,\,\text {keV}) = 3.1 </tex-math></inline-formula>% full-width at half-maximum and full device resolution with singles events from all pixels summed of 4.5%. When Compton-summed events are included, full-energy peak efficiency increases by <inline-formula> <tex-math notation="LaTeX">\sim 2\times </tex-math></inline-formula>, and <inline-formula> <tex-math notation="LaTeX">R (662\,\,\text {keV}) = 4.7 </tex-math></inline-formula>% is obtained for the full device. The pixelated architecture is leveraged to locate point sources of radiological materials using Compton imaging and active masking techniques. Directional detection of a 1 mCi Cs-137 source at 10 m can be made to ±10° in ~2 s.]]></description><subject>Acidity</subject><subject>Active Mask</subject><subject>Aluminum</subject><subject>Ceramics</subject><subject>Compton Imaging</subject><subject>Energy resolution</subject><subject>ENGINEERING</subject><subject>Firmware</subject><subject>Gadolinium</subject><subject>gadolinium–yttrium gallium–aluminum garnet (GYGAG)</subject><subject>Gamma Ray Spectrometer</subject><subject>Gamma rays</subject><subject>Garnet</subject><subject>Garnets</subject><subject>GYGAG</subject><subject>Histograms</subject><subject>INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY</subject><subject>Masking</subject><subject>Medical imaging</subject><subject>Optical coupling</subject><subject>Photodiodes</subject><subject>Pixels</subject><subject>Point sources</subject><subject>Radiation Detector</subject><subject>Radiation detectors</subject><subject>Scintillation counters</subject><subject>Scintillator</subject><subject>Scintillators</subject><subject>Sodium channels</subject><subject>Spectroscopy</subject><subject>Thermoelectric cooling</subject><issn>0018-9499</issn><issn>1558-1578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kM1LAzEQxYMoWKt3wcui562TZLObHKXWKhQFW_EY0nSWpnQ_TNJD_3sjWzwNM-_3hscj5JbChFJQj6v35YQBlRMmBReyOCMjKoTMqajkORlBknJVKHVJrkLYpbUQIEZktvKmDb3x2MZsit40zmZz41uMaTSNyT_NMVv2aKPvGozos28Xt9mz8-nkutbsXTxek4va7APenOaYfL3MVtPXfPExf5s-LXLLS4g5h1IiTfmQC4EMLEqrNnVZVlhUXIqiktIWSmw2awp1BRW1QDlby2otSiNLPib3w98uRKeDdRHt1nZtm7JoKoAB5wl6GKDedz8HDFHvuoNPQYNmoEAyRkuRKBgo67sQPNa6964x_qgp6L9GdWpU_zWqT40my91gcYj4j8sCVJHUX1P6b7o</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Swanberg, Erik L.</creator><creator>Cherepy, Nerine J.</creator><creator>Wihl, Brian M.</creator><creator>Beck, Patrick R.</creator><creator>Seeley, Zachary M.</creator><creator>Hunter, Steven L.</creator><creator>Fisher, Scott E.</creator><creator>Payne, Stephen A.</creator><creator>Kindem, Joel</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QL</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-3810-9995</orcidid><orcidid>https://orcid.org/0000-0001-8561-923X</orcidid><orcidid>https://orcid.org/0000-0003-2398-675X</orcidid><orcidid>https://orcid.org/000000018561923X</orcidid><orcidid>https://orcid.org/0000000338109995</orcidid><orcidid>https://orcid.org/000000032398675X</orcidid></search><sort><creationdate>20180801</creationdate><title>Transparent Ceramic Garnet Gamma-Ray Spectrometer With Directionality</title><author>Swanberg, Erik L. ; Cherepy, Nerine J. ; Wihl, Brian M. ; Beck, Patrick R. ; Seeley, Zachary M. ; Hunter, Steven L. ; Fisher, Scott E. ; Payne, Stephen A. ; Kindem, Joel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-3068e1853e355e20ce8c9df667e473854788c495ddb10f7071c0132b87b56a863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Acidity</topic><topic>Active Mask</topic><topic>Aluminum</topic><topic>Ceramics</topic><topic>Compton Imaging</topic><topic>Energy resolution</topic><topic>ENGINEERING</topic><topic>Firmware</topic><topic>Gadolinium</topic><topic>gadolinium–yttrium gallium–aluminum garnet (GYGAG)</topic><topic>Gamma Ray Spectrometer</topic><topic>Gamma rays</topic><topic>Garnet</topic><topic>Garnets</topic><topic>GYGAG</topic><topic>Histograms</topic><topic>INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY</topic><topic>Masking</topic><topic>Medical imaging</topic><topic>Optical coupling</topic><topic>Photodiodes</topic><topic>Pixels</topic><topic>Point sources</topic><topic>Radiation Detector</topic><topic>Radiation detectors</topic><topic>Scintillation counters</topic><topic>Scintillator</topic><topic>Scintillators</topic><topic>Sodium channels</topic><topic>Spectroscopy</topic><topic>Thermoelectric cooling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Swanberg, Erik L.</creatorcontrib><creatorcontrib>Cherepy, Nerine J.</creatorcontrib><creatorcontrib>Wihl, Brian M.</creatorcontrib><creatorcontrib>Beck, Patrick R.</creatorcontrib><creatorcontrib>Seeley, Zachary M.</creatorcontrib><creatorcontrib>Hunter, Steven L.</creatorcontrib><creatorcontrib>Fisher, Scott E.</creatorcontrib><creatorcontrib>Payne, Stephen A.</creatorcontrib><creatorcontrib>Kindem, Joel</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>IEEE transactions on nuclear science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Swanberg, Erik L.</au><au>Cherepy, Nerine J.</au><au>Wihl, Brian M.</au><au>Beck, Patrick R.</au><au>Seeley, Zachary M.</au><au>Hunter, Steven L.</au><au>Fisher, Scott E.</au><au>Payne, Stephen A.</au><au>Kindem, Joel</au><aucorp>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transparent Ceramic Garnet Gamma-Ray Spectrometer With Directionality</atitle><jtitle>IEEE transactions on nuclear science</jtitle><stitle>TNS</stitle><date>2018-08-01</date><risdate>2018</risdate><volume>65</volume><issue>8</issue><spage>2303</spage><epage>2309</epage><pages>2303-2309</pages><issn>0018-9499</issn><eissn>1558-1578</eissn><coden>IETNAE</coden><abstract><![CDATA[We have developed a handheld <inline-formula> <tex-math notation="LaTeX">\gamma </tex-math></inline-formula>-ray spectrometer based on 1024 pixels, <inline-formula> <tex-math notation="LaTeX">2.8\,\,\text {mm} \times 2.8\,\,\text {mm} \times 6 </tex-math></inline-formula> mm in size, of gadolinium-yttrium-gallium-aluminum garnet (GYGAG) ((Gd,Y,Ce) 3 (Ga,Al) 5 O 12 ) ceramic scintillator (total of 48-cm 3 detector volume) coupled to silicon photodiode (SiPD) arrays. The SiPD arrays and readout ASIC, originally developed for medical imaging applications, have been adapted for portability in a lightweight box with heatsink and thermoelectric cooling. Custom readout firmware for <inline-formula> <tex-math notation="LaTeX">\gamma </tex-math></inline-formula>-ray spectroscopy has been implemented, and a system user interface was developed that runs on an Android tablet. We have optimized the processing of the GYGAG(Ce), the pixel optical coupling, and electronics readout parameters to obtain single pixel energy resolution as good as <inline-formula> <tex-math notation="LaTeX">R (662\,\,\text {keV}) = 3.1 </tex-math></inline-formula>% full-width at half-maximum and full device resolution with singles events from all pixels summed of 4.5%. When Compton-summed events are included, full-energy peak efficiency increases by <inline-formula> <tex-math notation="LaTeX">\sim 2\times </tex-math></inline-formula>, and <inline-formula> <tex-math notation="LaTeX">R (662\,\,\text {keV}) = 4.7 </tex-math></inline-formula>% is obtained for the full device. The pixelated architecture is leveraged to locate point sources of radiological materials using Compton imaging and active masking techniques. Directional detection of a 1 mCi Cs-137 source at 10 m can be made to ±10° in ~2 s.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNS.2018.2853584</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-3810-9995</orcidid><orcidid>https://orcid.org/0000-0001-8561-923X</orcidid><orcidid>https://orcid.org/0000-0003-2398-675X</orcidid><orcidid>https://orcid.org/000000018561923X</orcidid><orcidid>https://orcid.org/0000000338109995</orcidid><orcidid>https://orcid.org/000000032398675X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0018-9499
ispartof IEEE transactions on nuclear science, 2018-08, Vol.65 (8), p.2303-2309
issn 0018-9499
1558-1578
language eng
recordid cdi_osti_scitechconnect_1502033
source IEEE Xplore (Online service)
subjects Acidity
Active Mask
Aluminum
Ceramics
Compton Imaging
Energy resolution
ENGINEERING
Firmware
Gadolinium
gadolinium–yttrium gallium–aluminum garnet (GYGAG)
Gamma Ray Spectrometer
Gamma rays
Garnet
Garnets
GYGAG
Histograms
INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY
Masking
Medical imaging
Optical coupling
Photodiodes
Pixels
Point sources
Radiation Detector
Radiation detectors
Scintillation counters
Scintillator
Scintillators
Sodium channels
Spectroscopy
Thermoelectric cooling
title Transparent Ceramic Garnet Gamma-Ray Spectrometer With Directionality
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T10%3A44%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transparent%20Ceramic%20Garnet%20Gamma-Ray%20Spectrometer%20With%20Directionality&rft.jtitle=IEEE%20transactions%20on%20nuclear%20science&rft.au=Swanberg,%20Erik%20L.&rft.aucorp=Lawrence%20Livermore%20National%20Lab.%20(LLNL),%20Livermore,%20CA%20(United%20States)&rft.date=2018-08-01&rft.volume=65&rft.issue=8&rft.spage=2303&rft.epage=2309&rft.pages=2303-2309&rft.issn=0018-9499&rft.eissn=1558-1578&rft.coden=IETNAE&rft_id=info:doi/10.1109/TNS.2018.2853584&rft_dat=%3Cproquest_osti_%3E2090822165%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c360t-3068e1853e355e20ce8c9df667e473854788c495ddb10f7071c0132b87b56a863%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2090822165&rft_id=info:pmid/&rft_ieee_id=8409484&rfr_iscdi=true