Loading…

Asynchronous Ballistic Reversible Fluxon Logic

In a previous paper, we described a new abstract circuit model for reversible computation called asynchronous ballistic reversible computing (ABRC), in which localized information-bearing pulses propagate ballistically along signal paths between stateful abstract devices and elastically scatter off...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on applied superconductivity 2019-08, Vol.29 (5), p.1-7
Main Authors: Frank, Michael P., Lewis, Rupert M., Missert, Nancy A., Wolak, Matthaus A., Henry, Michael D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c363t-f603a92e8ae5b930a73980ee0431de7996c0d66d44b5fd8ea03b93bd553b3b833
cites cdi_FETCH-LOGICAL-c363t-f603a92e8ae5b930a73980ee0431de7996c0d66d44b5fd8ea03b93bd553b3b833
container_end_page 7
container_issue 5
container_start_page 1
container_title IEEE transactions on applied superconductivity
container_volume 29
creator Frank, Michael P.
Lewis, Rupert M.
Missert, Nancy A.
Wolak, Matthaus A.
Henry, Michael D.
description In a previous paper, we described a new abstract circuit model for reversible computation called asynchronous ballistic reversible computing (ABRC), in which localized information-bearing pulses propagate ballistically along signal paths between stateful abstract devices and elastically scatter off those devices serially, while updating the device state in a logically-reversible and deterministic fashion. The ABRC model has been shown to be capable of universal computation. In the research reported here, we begin exploring how the ABRC model might be realized in practice using single flux quantum solitons (fluxons) in superconducting Josephson junction (JJ) circuits. One natural family of realizations could utilize fluxon polarity to represent binary data in individual pulses propagating near-ballistically, along discrete or continuous long Josephson junctions or microstrip passive transmission lines, and utilize the flux charge (-1, 0, +1) of a JJ-containing superconducting loop with Φ 0
doi_str_mv 10.1109/TASC.2019.2904962
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1502118</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8667665</ieee_id><sourcerecordid>2210028541</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-f603a92e8ae5b930a73980ee0431de7996c0d66d44b5fd8ea03b93bd553b3b833</originalsourceid><addsrcrecordid>eNo9kEFLw0AQhYMoWKs_QLwEPSfO7Ga3u8darAoFQet5STYTmxKzdTcR--9NSfE0c_je4_FF0TVCigj6fj1_X6QMUKdMQ6YlO4kmKIRKmEBxOvwgMFGM8fPoIoQtAGYqE5MonYd9azfeta4P8UPeNHXoahu_0Q_5UBcNxcum_3VtvHKftb2Mzqq8CXR1vNPoY_m4Xjwnq9enl8V8lVgueZdUEniuGamcRKE55DOuFRBBxrGkmdbSQillmWWFqEpFOfABK0oheMELxfk0uh173bDGBFt3ZDfWtS3ZzqAAhqgG6G6Edt599xQ6s3W9b4ddhjEEYEpkOFA4Uta7EDxVZufrr9zvDYI5uDMHd-bgzhzdDZmbMVMT0T-vpJxJKfgfIwxoqg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2210028541</pqid></control><display><type>article</type><title>Asynchronous Ballistic Reversible Fluxon Logic</title><source>IEEE Xplore (Online service)</source><creator>Frank, Michael P. ; Lewis, Rupert M. ; Missert, Nancy A. ; Wolak, Matthaus A. ; Henry, Michael D.</creator><creatorcontrib>Frank, Michael P. ; Lewis, Rupert M. ; Missert, Nancy A. ; Wolak, Matthaus A. ; Henry, Michael D. ; Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><description>In a previous paper, we described a new abstract circuit model for reversible computation called asynchronous ballistic reversible computing (ABRC), in which localized information-bearing pulses propagate ballistically along signal paths between stateful abstract devices and elastically scatter off those devices serially, while updating the device state in a logically-reversible and deterministic fashion. The ABRC model has been shown to be capable of universal computation. In the research reported here, we begin exploring how the ABRC model might be realized in practice using single flux quantum solitons (fluxons) in superconducting Josephson junction (JJ) circuits. One natural family of realizations could utilize fluxon polarity to represent binary data in individual pulses propagating near-ballistically, along discrete or continuous long Josephson junctions or microstrip passive transmission lines, and utilize the flux charge (-1, 0, +1) of a JJ-containing superconducting loop with Φ 0 &lt;; I c L &lt;; 2Φ 0 to encode a ternary state variable internal to a device. A natural question then arises as to which of the definable abstract ABRC device functionalities using this data representation might be implementable using a JJ circuit that dissipates only a small fraction of the input fluxon energy. We discuss conservation rules and symmetries considered as constraints to be obeyed in these circuits, and begin the process of classifying the possible ABRC devices in this family having up to three bidirectional I/O terminals, and up to three internal states.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2019.2904962</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Ballistic signaling ; Binary data ; Circuits ; Computation ; Computational modeling ; Energy conservation ; Energy efficiency ; Integrated circuit interconnections ; Integrated circuit modeling ; Josephson junctions ; MATHEMATICS AND COMPUTING ; Polarity ; Pulse propagation ; reversible computing ; Signal paths ; single flux quanta ; Solitary waves ; Solitons ; State variable ; Superconducting logic circuits ; Superconductivity ; Transmission lines</subject><ispartof>IEEE transactions on applied superconductivity, 2019-08, Vol.29 (5), p.1-7</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-f603a92e8ae5b930a73980ee0431de7996c0d66d44b5fd8ea03b93bd553b3b833</citedby><cites>FETCH-LOGICAL-c363t-f603a92e8ae5b930a73980ee0431de7996c0d66d44b5fd8ea03b93bd553b3b833</cites><orcidid>0000-0002-6125-5432 ; 0000-0002-5201-0644 ; 0000-0002-9860-208X ; 0000-0003-2082-2282 ; 0000-0003-3176-1593</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8667665$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1502118$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Frank, Michael P.</creatorcontrib><creatorcontrib>Lewis, Rupert M.</creatorcontrib><creatorcontrib>Missert, Nancy A.</creatorcontrib><creatorcontrib>Wolak, Matthaus A.</creatorcontrib><creatorcontrib>Henry, Michael D.</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><title>Asynchronous Ballistic Reversible Fluxon Logic</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>In a previous paper, we described a new abstract circuit model for reversible computation called asynchronous ballistic reversible computing (ABRC), in which localized information-bearing pulses propagate ballistically along signal paths between stateful abstract devices and elastically scatter off those devices serially, while updating the device state in a logically-reversible and deterministic fashion. The ABRC model has been shown to be capable of universal computation. In the research reported here, we begin exploring how the ABRC model might be realized in practice using single flux quantum solitons (fluxons) in superconducting Josephson junction (JJ) circuits. One natural family of realizations could utilize fluxon polarity to represent binary data in individual pulses propagating near-ballistically, along discrete or continuous long Josephson junctions or microstrip passive transmission lines, and utilize the flux charge (-1, 0, +1) of a JJ-containing superconducting loop with Φ 0 &lt;; I c L &lt;; 2Φ 0 to encode a ternary state variable internal to a device. A natural question then arises as to which of the definable abstract ABRC device functionalities using this data representation might be implementable using a JJ circuit that dissipates only a small fraction of the input fluxon energy. We discuss conservation rules and symmetries considered as constraints to be obeyed in these circuits, and begin the process of classifying the possible ABRC devices in this family having up to three bidirectional I/O terminals, and up to three internal states.</description><subject>Ballistic signaling</subject><subject>Binary data</subject><subject>Circuits</subject><subject>Computation</subject><subject>Computational modeling</subject><subject>Energy conservation</subject><subject>Energy efficiency</subject><subject>Integrated circuit interconnections</subject><subject>Integrated circuit modeling</subject><subject>Josephson junctions</subject><subject>MATHEMATICS AND COMPUTING</subject><subject>Polarity</subject><subject>Pulse propagation</subject><subject>reversible computing</subject><subject>Signal paths</subject><subject>single flux quanta</subject><subject>Solitary waves</subject><subject>Solitons</subject><subject>State variable</subject><subject>Superconducting logic circuits</subject><subject>Superconductivity</subject><subject>Transmission lines</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kEFLw0AQhYMoWKs_QLwEPSfO7Ga3u8darAoFQet5STYTmxKzdTcR--9NSfE0c_je4_FF0TVCigj6fj1_X6QMUKdMQ6YlO4kmKIRKmEBxOvwgMFGM8fPoIoQtAGYqE5MonYd9azfeta4P8UPeNHXoahu_0Q_5UBcNxcum_3VtvHKftb2Mzqq8CXR1vNPoY_m4Xjwnq9enl8V8lVgueZdUEniuGamcRKE55DOuFRBBxrGkmdbSQillmWWFqEpFOfABK0oheMELxfk0uh173bDGBFt3ZDfWtS3ZzqAAhqgG6G6Edt599xQ6s3W9b4ddhjEEYEpkOFA4Uta7EDxVZufrr9zvDYI5uDMHd-bgzhzdDZmbMVMT0T-vpJxJKfgfIwxoqg</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Frank, Michael P.</creator><creator>Lewis, Rupert M.</creator><creator>Missert, Nancy A.</creator><creator>Wolak, Matthaus A.</creator><creator>Henry, Michael D.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-6125-5432</orcidid><orcidid>https://orcid.org/0000-0002-5201-0644</orcidid><orcidid>https://orcid.org/0000-0002-9860-208X</orcidid><orcidid>https://orcid.org/0000-0003-2082-2282</orcidid><orcidid>https://orcid.org/0000-0003-3176-1593</orcidid></search><sort><creationdate>20190801</creationdate><title>Asynchronous Ballistic Reversible Fluxon Logic</title><author>Frank, Michael P. ; Lewis, Rupert M. ; Missert, Nancy A. ; Wolak, Matthaus A. ; Henry, Michael D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-f603a92e8ae5b930a73980ee0431de7996c0d66d44b5fd8ea03b93bd553b3b833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Ballistic signaling</topic><topic>Binary data</topic><topic>Circuits</topic><topic>Computation</topic><topic>Computational modeling</topic><topic>Energy conservation</topic><topic>Energy efficiency</topic><topic>Integrated circuit interconnections</topic><topic>Integrated circuit modeling</topic><topic>Josephson junctions</topic><topic>MATHEMATICS AND COMPUTING</topic><topic>Polarity</topic><topic>Pulse propagation</topic><topic>reversible computing</topic><topic>Signal paths</topic><topic>single flux quanta</topic><topic>Solitary waves</topic><topic>Solitons</topic><topic>State variable</topic><topic>Superconducting logic circuits</topic><topic>Superconductivity</topic><topic>Transmission lines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Frank, Michael P.</creatorcontrib><creatorcontrib>Lewis, Rupert M.</creatorcontrib><creatorcontrib>Missert, Nancy A.</creatorcontrib><creatorcontrib>Wolak, Matthaus A.</creatorcontrib><creatorcontrib>Henry, Michael D.</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore (Online service)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Frank, Michael P.</au><au>Lewis, Rupert M.</au><au>Missert, Nancy A.</au><au>Wolak, Matthaus A.</au><au>Henry, Michael D.</au><aucorp>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asynchronous Ballistic Reversible Fluxon Logic</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2019-08-01</date><risdate>2019</risdate><volume>29</volume><issue>5</issue><spage>1</spage><epage>7</epage><pages>1-7</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>In a previous paper, we described a new abstract circuit model for reversible computation called asynchronous ballistic reversible computing (ABRC), in which localized information-bearing pulses propagate ballistically along signal paths between stateful abstract devices and elastically scatter off those devices serially, while updating the device state in a logically-reversible and deterministic fashion. The ABRC model has been shown to be capable of universal computation. In the research reported here, we begin exploring how the ABRC model might be realized in practice using single flux quantum solitons (fluxons) in superconducting Josephson junction (JJ) circuits. One natural family of realizations could utilize fluxon polarity to represent binary data in individual pulses propagating near-ballistically, along discrete or continuous long Josephson junctions or microstrip passive transmission lines, and utilize the flux charge (-1, 0, +1) of a JJ-containing superconducting loop with Φ 0 &lt;; I c L &lt;; 2Φ 0 to encode a ternary state variable internal to a device. A natural question then arises as to which of the definable abstract ABRC device functionalities using this data representation might be implementable using a JJ circuit that dissipates only a small fraction of the input fluxon energy. We discuss conservation rules and symmetries considered as constraints to be obeyed in these circuits, and begin the process of classifying the possible ABRC devices in this family having up to three bidirectional I/O terminals, and up to three internal states.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TASC.2019.2904962</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-6125-5432</orcidid><orcidid>https://orcid.org/0000-0002-5201-0644</orcidid><orcidid>https://orcid.org/0000-0002-9860-208X</orcidid><orcidid>https://orcid.org/0000-0003-2082-2282</orcidid><orcidid>https://orcid.org/0000-0003-3176-1593</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1051-8223
ispartof IEEE transactions on applied superconductivity, 2019-08, Vol.29 (5), p.1-7
issn 1051-8223
1558-2515
language eng
recordid cdi_osti_scitechconnect_1502118
source IEEE Xplore (Online service)
subjects Ballistic signaling
Binary data
Circuits
Computation
Computational modeling
Energy conservation
Energy efficiency
Integrated circuit interconnections
Integrated circuit modeling
Josephson junctions
MATHEMATICS AND COMPUTING
Polarity
Pulse propagation
reversible computing
Signal paths
single flux quanta
Solitary waves
Solitons
State variable
Superconducting logic circuits
Superconductivity
Transmission lines
title Asynchronous Ballistic Reversible Fluxon Logic
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T12%3A32%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asynchronous%20Ballistic%20Reversible%20Fluxon%20Logic&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Frank,%20Michael%20P.&rft.aucorp=Sandia%20National%20Lab.%20(SNL-NM),%20Albuquerque,%20NM%20(United%20States)&rft.date=2019-08-01&rft.volume=29&rft.issue=5&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2019.2904962&rft_dat=%3Cproquest_osti_%3E2210028541%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c363t-f603a92e8ae5b930a73980ee0431de7996c0d66d44b5fd8ea03b93bd553b3b833%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2210028541&rft_id=info:pmid/&rft_ieee_id=8667665&rfr_iscdi=true