Loading…

Microstructural investigation of an extruded austenitic oxide dispersion strengthened steel containing a carbon-containing process control agent

The adhesion of austenitic oxide dispersion strengthened (ODS) steel during mechanical alloying and a decreased powder production yield can be overcome by the addition of a process control agent: stearic acid. Here, the influence of stearic acid and the introduction of carbon in an extruded and anne...

Full description

Saved in:
Bibliographic Details
Published in:Journal of nuclear materials 2019-04, Vol.516 (C), p.335-346
Main Authors: Gräning, Tim, Rieth, Michael, Hoffmann, Jan, Seils, Sascha, Edmondson, Philip D., Möslang, Anton
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The adhesion of austenitic oxide dispersion strengthened (ODS) steel during mechanical alloying and a decreased powder production yield can be overcome by the addition of a process control agent: stearic acid. Here, the influence of stearic acid and the introduction of carbon in an extruded and annealed austenitic ODS steel was investigated. In particular the impact of carbon on the precipitate formation, the stability of particle and grain sizes during a heat treatment of 2 h at temperatures in a range between 500 and 1100 °C and the resulting grain size were investigated. No direct influence of carbon on the formation of precipitates was detected in the as-extruded condition. The orientation relationship of oxide nano-particles and the austenitic matrix was found to be size dependent. Also, a surprising growth of oxide precipitates was recorded, which starts at annealing temperatures as low as 700 °C. Precipitates in other steels do not show a growth in this temperature regime at all. For that reason, a possible link between the unexpected growth and the formation of carbides was investigated. M7C3 and M23C6 carbides were found in every sample condition and we were able to show that their amount follows a trend suggested by thermodynamic simulations. The grain size of the extruded austenitic ODS steel was examined and a grain refinement was found after a heat treatment of 2 h at 700 °C or higher was performed. That is caused by the inhabitation of further grain growth after nucleation as part of the recrystallization process has happened. The dragging force exerted by precipitates is strong enough to pin grain boundaries. Nevertheless, no direct impact of carbon on the oxide precipitate growth was found, an indirect impact of carbon on the growth of ODS precipitates is supposed but requires long-term annealing studies to be verified.
ISSN:0022-3115
1873-4820
DOI:10.1016/j.jnucmat.2019.01.048