Loading…
Influence of Sn on martensitic beta Ti alloys
The influence of Sn composition in Ti-17 at% Nb alloys is studied by cyclic tension and in-situ synchrotron X-ray diffraction. It is firstly found that Sn stabilizes β-phase and effectively suppresses the formation of ω-phase. Along with β-phase stability, we observe lowering of the austenite and ma...
Saved in:
Published in: | Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2019-01, Vol.743 (C), p.764-772 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c399t-c2e893e11ba739c987e84b14425de16263c1f4a173a36a622c1086fdde1c2cda3 |
---|---|
cites | cdi_FETCH-LOGICAL-c399t-c2e893e11ba739c987e84b14425de16263c1f4a173a36a622c1086fdde1c2cda3 |
container_end_page | 772 |
container_issue | C |
container_start_page | 764 |
container_title | Materials science & engineering. A, Structural materials : properties, microstructure and processing |
container_volume | 743 |
creator | Cai, S. Wang, L. Schaffer, J.E. Gao, J. Ren, Y. |
description | The influence of Sn composition in Ti-17 at% Nb alloys is studied by cyclic tension and in-situ synchrotron X-ray diffraction. It is firstly found that Sn stabilizes β-phase and effectively suppresses the formation of ω-phase. Along with β-phase stability, we observe lowering of the austenite and martensite transformation temperature by ~100 K/at% and 88 K/at%, respectively. Increasing Sn decreases the martensitic transformation strain in Ti-Nb alloys by ~1.4%/at%, larger than that in Ti-Zr-Nb-Sn systems. The influence of Sn in martensitic Ti is anisotropic: causing larger reduction in lattice parameter b and higher decreases in elastic moduli of grain families that are aligned close to the b-axis. Finally, a {013}α″, {031}α″,{122}α″ and {211}α″ quadruple texture was observed in martensitic Ti wire. At the early stage of deformation, detwinning quickly rotated {013}α″ and {211}α″ towards {031}α″ and {122}α″ components. After that, the strength of {031}α″ continued to increase, while the strength of {122}α″ texture was gradually decreased by dislocation slip as deformation continued. |
doi_str_mv | 10.1016/j.msea.2018.11.095 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1503591</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509318316228</els_id><sourcerecordid>2183149067</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-c2e893e11ba739c987e84b14425de16263c1f4a173a36a622c1086fdde1c2cda3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU9Fz62ZpE0b8CKLHwsLHlzPIZtOMaWbrElX2H9vSj17msM87_DOQ8gt0AIoiIe-2EfUBaPQFAAFldUZWUBT87yUXJyTBZUM8opKfkmuYuwppVDSakHyteuGIzqDme-yD5d5l-11GNFFO1qT7XDU2dZmehj8KV6Ti04PEW_-5pJ8vjxvV2_55v11vXra5IZLOeaGYSM5Aux0zaWRTY1NuYOyZFWLIJjgBrpSQ801F1owZoA2omvT0jDTar4kd_NdH0erorEjmi_jnUMzKqgoryQk6H6GDsF_HzGOqvfH4FIvxaDhUEoq6kSxmTLBxxiwU4dg04cnBVRN7lSvJndqcqcAVHKXQo9zCNOTPxbD1GGS1NowVWi9_S_-CwhOdSc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2183149067</pqid></control><display><type>article</type><title>Influence of Sn on martensitic beta Ti alloys</title><source>ScienceDirect Journals</source><creator>Cai, S. ; Wang, L. ; Schaffer, J.E. ; Gao, J. ; Ren, Y.</creator><creatorcontrib>Cai, S. ; Wang, L. ; Schaffer, J.E. ; Gao, J. ; Ren, Y. ; Argonne National Laboratory (ANL), Lemont, IL (United States)</creatorcontrib><description>The influence of Sn composition in Ti-17 at% Nb alloys is studied by cyclic tension and in-situ synchrotron X-ray diffraction. It is firstly found that Sn stabilizes β-phase and effectively suppresses the formation of ω-phase. Along with β-phase stability, we observe lowering of the austenite and martensite transformation temperature by ~100 K/at% and 88 K/at%, respectively. Increasing Sn decreases the martensitic transformation strain in Ti-Nb alloys by ~1.4%/at%, larger than that in Ti-Zr-Nb-Sn systems. The influence of Sn in martensitic Ti is anisotropic: causing larger reduction in lattice parameter b and higher decreases in elastic moduli of grain families that are aligned close to the b-axis. Finally, a {013}α″, {031}α″,{122}α″ and {211}α″ quadruple texture was observed in martensitic Ti wire. At the early stage of deformation, detwinning quickly rotated {013}α″ and {211}α″ towards {031}α″ and {122}α″ components. After that, the strength of {031}α″ continued to increase, while the strength of {122}α″ texture was gradually decreased by dislocation slip as deformation continued.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2018.11.095</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Alloy systems ; Beta phase ; Deformation mechanisms ; Detwinning ; Dislocations ; Martensite ; Martensitic Ti ; Martensitic transformations ; MATERIALS SCIENCE ; Modulus of elasticity ; Phase stability ; Phase transformation ; Synchrotron ; Synchrotron radiation ; Texture ; Titanium base alloys ; Transformation temperature ; X-ray diffraction ; Zirconium</subject><ispartof>Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2019-01, Vol.743 (C), p.764-772</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jan 16, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-c2e893e11ba739c987e84b14425de16263c1f4a173a36a622c1086fdde1c2cda3</citedby><cites>FETCH-LOGICAL-c399t-c2e893e11ba739c987e84b14425de16263c1f4a173a36a622c1086fdde1c2cda3</cites><orcidid>0000-0003-1160-6553 ; 0000-0001-5132-9744 ; 0000000311606553 ; 0000000151329744</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1503591$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Cai, S.</creatorcontrib><creatorcontrib>Wang, L.</creatorcontrib><creatorcontrib>Schaffer, J.E.</creatorcontrib><creatorcontrib>Gao, J.</creatorcontrib><creatorcontrib>Ren, Y.</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Lemont, IL (United States)</creatorcontrib><title>Influence of Sn on martensitic beta Ti alloys</title><title>Materials science & engineering. A, Structural materials : properties, microstructure and processing</title><description>The influence of Sn composition in Ti-17 at% Nb alloys is studied by cyclic tension and in-situ synchrotron X-ray diffraction. It is firstly found that Sn stabilizes β-phase and effectively suppresses the formation of ω-phase. Along with β-phase stability, we observe lowering of the austenite and martensite transformation temperature by ~100 K/at% and 88 K/at%, respectively. Increasing Sn decreases the martensitic transformation strain in Ti-Nb alloys by ~1.4%/at%, larger than that in Ti-Zr-Nb-Sn systems. The influence of Sn in martensitic Ti is anisotropic: causing larger reduction in lattice parameter b and higher decreases in elastic moduli of grain families that are aligned close to the b-axis. Finally, a {013}α″, {031}α″,{122}α″ and {211}α″ quadruple texture was observed in martensitic Ti wire. At the early stage of deformation, detwinning quickly rotated {013}α″ and {211}α″ towards {031}α″ and {122}α″ components. After that, the strength of {031}α″ continued to increase, while the strength of {122}α″ texture was gradually decreased by dislocation slip as deformation continued.</description><subject>Alloy systems</subject><subject>Beta phase</subject><subject>Deformation mechanisms</subject><subject>Detwinning</subject><subject>Dislocations</subject><subject>Martensite</subject><subject>Martensitic Ti</subject><subject>Martensitic transformations</subject><subject>MATERIALS SCIENCE</subject><subject>Modulus of elasticity</subject><subject>Phase stability</subject><subject>Phase transformation</subject><subject>Synchrotron</subject><subject>Synchrotron radiation</subject><subject>Texture</subject><subject>Titanium base alloys</subject><subject>Transformation temperature</subject><subject>X-ray diffraction</subject><subject>Zirconium</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AU9Fz62ZpE0b8CKLHwsLHlzPIZtOMaWbrElX2H9vSj17msM87_DOQ8gt0AIoiIe-2EfUBaPQFAAFldUZWUBT87yUXJyTBZUM8opKfkmuYuwppVDSakHyteuGIzqDme-yD5d5l-11GNFFO1qT7XDU2dZmehj8KV6Ti04PEW_-5pJ8vjxvV2_55v11vXra5IZLOeaGYSM5Aux0zaWRTY1NuYOyZFWLIJjgBrpSQ801F1owZoA2omvT0jDTar4kd_NdH0erorEjmi_jnUMzKqgoryQk6H6GDsF_HzGOqvfH4FIvxaDhUEoq6kSxmTLBxxiwU4dg04cnBVRN7lSvJndqcqcAVHKXQo9zCNOTPxbD1GGS1NowVWi9_S_-CwhOdSc</recordid><startdate>20190116</startdate><enddate>20190116</enddate><creator>Cai, S.</creator><creator>Wang, L.</creator><creator>Schaffer, J.E.</creator><creator>Gao, J.</creator><creator>Ren, Y.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-1160-6553</orcidid><orcidid>https://orcid.org/0000-0001-5132-9744</orcidid><orcidid>https://orcid.org/0000000311606553</orcidid><orcidid>https://orcid.org/0000000151329744</orcidid></search><sort><creationdate>20190116</creationdate><title>Influence of Sn on martensitic beta Ti alloys</title><author>Cai, S. ; Wang, L. ; Schaffer, J.E. ; Gao, J. ; Ren, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-c2e893e11ba739c987e84b14425de16263c1f4a173a36a622c1086fdde1c2cda3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alloy systems</topic><topic>Beta phase</topic><topic>Deformation mechanisms</topic><topic>Detwinning</topic><topic>Dislocations</topic><topic>Martensite</topic><topic>Martensitic Ti</topic><topic>Martensitic transformations</topic><topic>MATERIALS SCIENCE</topic><topic>Modulus of elasticity</topic><topic>Phase stability</topic><topic>Phase transformation</topic><topic>Synchrotron</topic><topic>Synchrotron radiation</topic><topic>Texture</topic><topic>Titanium base alloys</topic><topic>Transformation temperature</topic><topic>X-ray diffraction</topic><topic>Zirconium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cai, S.</creatorcontrib><creatorcontrib>Wang, L.</creatorcontrib><creatorcontrib>Schaffer, J.E.</creatorcontrib><creatorcontrib>Gao, J.</creatorcontrib><creatorcontrib>Ren, Y.</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Lemont, IL (United States)</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cai, S.</au><au>Wang, L.</au><au>Schaffer, J.E.</au><au>Gao, J.</au><au>Ren, Y.</au><aucorp>Argonne National Laboratory (ANL), Lemont, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of Sn on martensitic beta Ti alloys</atitle><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2019-01-16</date><risdate>2019</risdate><volume>743</volume><issue>C</issue><spage>764</spage><epage>772</epage><pages>764-772</pages><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>The influence of Sn composition in Ti-17 at% Nb alloys is studied by cyclic tension and in-situ synchrotron X-ray diffraction. It is firstly found that Sn stabilizes β-phase and effectively suppresses the formation of ω-phase. Along with β-phase stability, we observe lowering of the austenite and martensite transformation temperature by ~100 K/at% and 88 K/at%, respectively. Increasing Sn decreases the martensitic transformation strain in Ti-Nb alloys by ~1.4%/at%, larger than that in Ti-Zr-Nb-Sn systems. The influence of Sn in martensitic Ti is anisotropic: causing larger reduction in lattice parameter b and higher decreases in elastic moduli of grain families that are aligned close to the b-axis. Finally, a {013}α″, {031}α″,{122}α″ and {211}α″ quadruple texture was observed in martensitic Ti wire. At the early stage of deformation, detwinning quickly rotated {013}α″ and {211}α″ towards {031}α″ and {122}α″ components. After that, the strength of {031}α″ continued to increase, while the strength of {122}α″ texture was gradually decreased by dislocation slip as deformation continued.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2018.11.095</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1160-6553</orcidid><orcidid>https://orcid.org/0000-0001-5132-9744</orcidid><orcidid>https://orcid.org/0000000311606553</orcidid><orcidid>https://orcid.org/0000000151329744</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0921-5093 |
ispartof | Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2019-01, Vol.743 (C), p.764-772 |
issn | 0921-5093 1873-4936 |
language | eng |
recordid | cdi_osti_scitechconnect_1503591 |
source | ScienceDirect Journals |
subjects | Alloy systems Beta phase Deformation mechanisms Detwinning Dislocations Martensite Martensitic Ti Martensitic transformations MATERIALS SCIENCE Modulus of elasticity Phase stability Phase transformation Synchrotron Synchrotron radiation Texture Titanium base alloys Transformation temperature X-ray diffraction Zirconium |
title | Influence of Sn on martensitic beta Ti alloys |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T17%3A07%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20Sn%20on%20martensitic%20beta%20Ti%20alloys&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Cai,%20S.&rft.aucorp=Argonne%20National%20Laboratory%20(ANL),%20Lemont,%20IL%20(United%20States)&rft.date=2019-01-16&rft.volume=743&rft.issue=C&rft.spage=764&rft.epage=772&rft.pages=764-772&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2018.11.095&rft_dat=%3Cproquest_osti_%3E2183149067%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c399t-c2e893e11ba739c987e84b14425de16263c1f4a173a36a622c1086fdde1c2cda3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2183149067&rft_id=info:pmid/&rfr_iscdi=true |