Loading…
Engineering Topological Superlattices and Phase Diagrams
The search for new topological materials and states of matter is presently at the forefront of quantum materials research. One powerful approach to novel topological phases beyond the thermodynamic space is to combine different topological/functional materials into a single materials platform in the...
Saved in:
Published in: | Nano letters 2019-02, Vol.19 (2), p.716-721 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a441t-c07f94e13e7999ad8a81edfc1d62ce4aa78ea8bfaab6db13a1130995bcad9b983 |
---|---|
cites | cdi_FETCH-LOGICAL-a441t-c07f94e13e7999ad8a81edfc1d62ce4aa78ea8bfaab6db13a1130995bcad9b983 |
container_end_page | 721 |
container_issue | 2 |
container_start_page | 716 |
container_title | Nano letters |
container_volume | 19 |
creator | Shibayev, Pavel P König, Elio J Salehi, Maryam Moon, Jisoo Han, Myung-Geun Oh, Seongshik |
description | The search for new topological materials and states of matter is presently at the forefront of quantum materials research. One powerful approach to novel topological phases beyond the thermodynamic space is to combine different topological/functional materials into a single materials platform in the form of superlattices. However, despite some previous efforts there has been a significant gap between theories and experiments in this direction. Here, we provide the first detailed set of experimentally verifiable phase diagrams of topological superlattices composed of archetypal topological insulator, Bi2Se3, and normal insulator, In2Se3, by combining molecular-level materials control, low-temperature magnetotransport measurements, and field theoretical calculations. We show how the electronic properties of topological superlattices evolve with unit-layer thicknesses and utilize the weak antilocalization effect as a tool to gain quantitative insights into the evolution of conducting channels within each set of heterostructures. This orchestrated study opens the door to the possibility of creating a variety of artificial-topological-phases by combining topological materials with various other functional building blocks such as superconductors and magnetic materials. |
doi_str_mv | 10.1021/acs.nanolett.8b03751 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1504373</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2179394338</sourcerecordid><originalsourceid>FETCH-LOGICAL-a441t-c07f94e13e7999ad8a81edfc1d62ce4aa78ea8bfaab6db13a1130995bcad9b983</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EoqXwBwhFrNi02HFeXqJSHlIlkChra-JMUlepXWxnwd-TKm2XrOYuzr0jHUJuGZ0xGrNHUH5mwNgWQ5gVJeV5ys7ImKWcTjMh4vNTLpIRufJ-QykVPKWXZMRplnFO8zEpFqbRBtFp00Qru7OtbbSCNvrqduhaCEEr9BGYKvpcg8foWUPjYOuvyUUNrcebw52Q75fFav42XX68vs-fllNIEhamiua1SJBxzIUQUBVQMKxqxaosVpgA5AVCUdYAZVaVjANjnAqRlgoqUYqCT8j9sGt90NIrHVCtlTUGVZAspQnPeQ89DNDO2Z8OfZBb7RW2LRi0nZcxywUXCef7vWRAlbPeO6zlzuktuF_JqNyLlb1YeRQrD2L72t3hQ1dusTqVjiZ7gA7Avr6xnTO9lf83_wAk1ohZ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2179394338</pqid></control><display><type>article</type><title>Engineering Topological Superlattices and Phase Diagrams</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Shibayev, Pavel P ; König, Elio J ; Salehi, Maryam ; Moon, Jisoo ; Han, Myung-Geun ; Oh, Seongshik</creator><creatorcontrib>Shibayev, Pavel P ; König, Elio J ; Salehi, Maryam ; Moon, Jisoo ; Han, Myung-Geun ; Oh, Seongshik ; Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><description>The search for new topological materials and states of matter is presently at the forefront of quantum materials research. One powerful approach to novel topological phases beyond the thermodynamic space is to combine different topological/functional materials into a single materials platform in the form of superlattices. However, despite some previous efforts there has been a significant gap between theories and experiments in this direction. Here, we provide the first detailed set of experimentally verifiable phase diagrams of topological superlattices composed of archetypal topological insulator, Bi2Se3, and normal insulator, In2Se3, by combining molecular-level materials control, low-temperature magnetotransport measurements, and field theoretical calculations. We show how the electronic properties of topological superlattices evolve with unit-layer thicknesses and utilize the weak antilocalization effect as a tool to gain quantitative insights into the evolution of conducting channels within each set of heterostructures. This orchestrated study opens the door to the possibility of creating a variety of artificial-topological-phases by combining topological materials with various other functional building blocks such as superconductors and magnetic materials.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.8b03751</identifier><identifier>PMID: 30663307</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; phase diagrams ; Superlattices ; topological insulators ; weak antilocalization</subject><ispartof>Nano letters, 2019-02, Vol.19 (2), p.716-721</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a441t-c07f94e13e7999ad8a81edfc1d62ce4aa78ea8bfaab6db13a1130995bcad9b983</citedby><cites>FETCH-LOGICAL-a441t-c07f94e13e7999ad8a81edfc1d62ce4aa78ea8bfaab6db13a1130995bcad9b983</cites><orcidid>0000-0002-7214-5706 ; 0000-0003-2123-6349 ; 0000-0003-1681-516X ; 0000000321236349 ; 000000031681516X ; 0000000272145706</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30663307$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1504373$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Shibayev, Pavel P</creatorcontrib><creatorcontrib>König, Elio J</creatorcontrib><creatorcontrib>Salehi, Maryam</creatorcontrib><creatorcontrib>Moon, Jisoo</creatorcontrib><creatorcontrib>Han, Myung-Geun</creatorcontrib><creatorcontrib>Oh, Seongshik</creatorcontrib><creatorcontrib>Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><title>Engineering Topological Superlattices and Phase Diagrams</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>The search for new topological materials and states of matter is presently at the forefront of quantum materials research. One powerful approach to novel topological phases beyond the thermodynamic space is to combine different topological/functional materials into a single materials platform in the form of superlattices. However, despite some previous efforts there has been a significant gap between theories and experiments in this direction. Here, we provide the first detailed set of experimentally verifiable phase diagrams of topological superlattices composed of archetypal topological insulator, Bi2Se3, and normal insulator, In2Se3, by combining molecular-level materials control, low-temperature magnetotransport measurements, and field theoretical calculations. We show how the electronic properties of topological superlattices evolve with unit-layer thicknesses and utilize the weak antilocalization effect as a tool to gain quantitative insights into the evolution of conducting channels within each set of heterostructures. This orchestrated study opens the door to the possibility of creating a variety of artificial-topological-phases by combining topological materials with various other functional building blocks such as superconductors and magnetic materials.</description><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>phase diagrams</subject><subject>Superlattices</subject><subject>topological insulators</subject><subject>weak antilocalization</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EoqXwBwhFrNi02HFeXqJSHlIlkChra-JMUlepXWxnwd-TKm2XrOYuzr0jHUJuGZ0xGrNHUH5mwNgWQ5gVJeV5ys7ImKWcTjMh4vNTLpIRufJ-QykVPKWXZMRplnFO8zEpFqbRBtFp00Qru7OtbbSCNvrqduhaCEEr9BGYKvpcg8foWUPjYOuvyUUNrcebw52Q75fFav42XX68vs-fllNIEhamiua1SJBxzIUQUBVQMKxqxaosVpgA5AVCUdYAZVaVjANjnAqRlgoqUYqCT8j9sGt90NIrHVCtlTUGVZAspQnPeQ89DNDO2Z8OfZBb7RW2LRi0nZcxywUXCef7vWRAlbPeO6zlzuktuF_JqNyLlb1YeRQrD2L72t3hQ1dusTqVjiZ7gA7Avr6xnTO9lf83_wAk1ohZ</recordid><startdate>20190213</startdate><enddate>20190213</enddate><creator>Shibayev, Pavel P</creator><creator>König, Elio J</creator><creator>Salehi, Maryam</creator><creator>Moon, Jisoo</creator><creator>Han, Myung-Geun</creator><creator>Oh, Seongshik</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-7214-5706</orcidid><orcidid>https://orcid.org/0000-0003-2123-6349</orcidid><orcidid>https://orcid.org/0000-0003-1681-516X</orcidid><orcidid>https://orcid.org/0000000321236349</orcidid><orcidid>https://orcid.org/000000031681516X</orcidid><orcidid>https://orcid.org/0000000272145706</orcidid></search><sort><creationdate>20190213</creationdate><title>Engineering Topological Superlattices and Phase Diagrams</title><author>Shibayev, Pavel P ; König, Elio J ; Salehi, Maryam ; Moon, Jisoo ; Han, Myung-Geun ; Oh, Seongshik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a441t-c07f94e13e7999ad8a81edfc1d62ce4aa78ea8bfaab6db13a1130995bcad9b983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>phase diagrams</topic><topic>Superlattices</topic><topic>topological insulators</topic><topic>weak antilocalization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shibayev, Pavel P</creatorcontrib><creatorcontrib>König, Elio J</creatorcontrib><creatorcontrib>Salehi, Maryam</creatorcontrib><creatorcontrib>Moon, Jisoo</creatorcontrib><creatorcontrib>Han, Myung-Geun</creatorcontrib><creatorcontrib>Oh, Seongshik</creatorcontrib><creatorcontrib>Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shibayev, Pavel P</au><au>König, Elio J</au><au>Salehi, Maryam</au><au>Moon, Jisoo</au><au>Han, Myung-Geun</au><au>Oh, Seongshik</au><aucorp>Brookhaven National Lab. (BNL), Upton, NY (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering Topological Superlattices and Phase Diagrams</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2019-02-13</date><risdate>2019</risdate><volume>19</volume><issue>2</issue><spage>716</spage><epage>721</epage><pages>716-721</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>The search for new topological materials and states of matter is presently at the forefront of quantum materials research. One powerful approach to novel topological phases beyond the thermodynamic space is to combine different topological/functional materials into a single materials platform in the form of superlattices. However, despite some previous efforts there has been a significant gap between theories and experiments in this direction. Here, we provide the first detailed set of experimentally verifiable phase diagrams of topological superlattices composed of archetypal topological insulator, Bi2Se3, and normal insulator, In2Se3, by combining molecular-level materials control, low-temperature magnetotransport measurements, and field theoretical calculations. We show how the electronic properties of topological superlattices evolve with unit-layer thicknesses and utilize the weak antilocalization effect as a tool to gain quantitative insights into the evolution of conducting channels within each set of heterostructures. This orchestrated study opens the door to the possibility of creating a variety of artificial-topological-phases by combining topological materials with various other functional building blocks such as superconductors and magnetic materials.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30663307</pmid><doi>10.1021/acs.nanolett.8b03751</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-7214-5706</orcidid><orcidid>https://orcid.org/0000-0003-2123-6349</orcidid><orcidid>https://orcid.org/0000-0003-1681-516X</orcidid><orcidid>https://orcid.org/0000000321236349</orcidid><orcidid>https://orcid.org/000000031681516X</orcidid><orcidid>https://orcid.org/0000000272145706</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-6984 |
ispartof | Nano letters, 2019-02, Vol.19 (2), p.716-721 |
issn | 1530-6984 1530-6992 |
language | eng |
recordid | cdi_osti_scitechconnect_1504373 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY phase diagrams Superlattices topological insulators weak antilocalization |
title | Engineering Topological Superlattices and Phase Diagrams |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T05%3A46%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20Topological%20Superlattices%20and%20Phase%20Diagrams&rft.jtitle=Nano%20letters&rft.au=Shibayev,%20Pavel%20P&rft.aucorp=Brookhaven%20National%20Lab.%20(BNL),%20Upton,%20NY%20(United%20States)&rft.date=2019-02-13&rft.volume=19&rft.issue=2&rft.spage=716&rft.epage=721&rft.pages=716-721&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.8b03751&rft_dat=%3Cproquest_osti_%3E2179394338%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a441t-c07f94e13e7999ad8a81edfc1d62ce4aa78ea8bfaab6db13a1130995bcad9b983%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2179394338&rft_id=info:pmid/30663307&rfr_iscdi=true |