Loading…

Engineering Topological Superlattices and Phase Diagrams

The search for new topological materials and states of matter is presently at the forefront of quantum materials research. One powerful approach to novel topological phases beyond the thermodynamic space is to combine different topological/functional materials into a single materials platform in the...

Full description

Saved in:
Bibliographic Details
Published in:Nano letters 2019-02, Vol.19 (2), p.716-721
Main Authors: Shibayev, Pavel P, König, Elio J, Salehi, Maryam, Moon, Jisoo, Han, Myung-Geun, Oh, Seongshik
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a441t-c07f94e13e7999ad8a81edfc1d62ce4aa78ea8bfaab6db13a1130995bcad9b983
cites cdi_FETCH-LOGICAL-a441t-c07f94e13e7999ad8a81edfc1d62ce4aa78ea8bfaab6db13a1130995bcad9b983
container_end_page 721
container_issue 2
container_start_page 716
container_title Nano letters
container_volume 19
creator Shibayev, Pavel P
König, Elio J
Salehi, Maryam
Moon, Jisoo
Han, Myung-Geun
Oh, Seongshik
description The search for new topological materials and states of matter is presently at the forefront of quantum materials research. One powerful approach to novel topological phases beyond the thermodynamic space is to combine different topological/functional materials into a single materials platform in the form of superlattices. However, despite some previous efforts there has been a significant gap between theories and experiments in this direction. Here, we provide the first detailed set of experimentally verifiable phase diagrams of topological superlattices composed of archetypal topological insulator, Bi2Se3, and normal insulator, In2Se3, by combining molecular-level materials control, low-temperature magnetotransport measurements, and field theoretical calculations. We show how the electronic properties of topological superlattices evolve with unit-layer thicknesses and utilize the weak antilocalization effect as a tool to gain quantitative insights into the evolution of conducting channels within each set of heterostructures. This orchestrated study opens the door to the possibility of creating a variety of artificial-topological-phases by combining topological materials with various other functional building blocks such as superconductors and magnetic materials.
doi_str_mv 10.1021/acs.nanolett.8b03751
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1504373</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2179394338</sourcerecordid><originalsourceid>FETCH-LOGICAL-a441t-c07f94e13e7999ad8a81edfc1d62ce4aa78ea8bfaab6db13a1130995bcad9b983</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EoqXwBwhFrNi02HFeXqJSHlIlkChra-JMUlepXWxnwd-TKm2XrOYuzr0jHUJuGZ0xGrNHUH5mwNgWQ5gVJeV5ys7ImKWcTjMh4vNTLpIRufJ-QykVPKWXZMRplnFO8zEpFqbRBtFp00Qru7OtbbSCNvrqduhaCEEr9BGYKvpcg8foWUPjYOuvyUUNrcebw52Q75fFav42XX68vs-fllNIEhamiua1SJBxzIUQUBVQMKxqxaosVpgA5AVCUdYAZVaVjANjnAqRlgoqUYqCT8j9sGt90NIrHVCtlTUGVZAspQnPeQ89DNDO2Z8OfZBb7RW2LRi0nZcxywUXCef7vWRAlbPeO6zlzuktuF_JqNyLlb1YeRQrD2L72t3hQ1dusTqVjiZ7gA7Avr6xnTO9lf83_wAk1ohZ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2179394338</pqid></control><display><type>article</type><title>Engineering Topological Superlattices and Phase Diagrams</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Shibayev, Pavel P ; König, Elio J ; Salehi, Maryam ; Moon, Jisoo ; Han, Myung-Geun ; Oh, Seongshik</creator><creatorcontrib>Shibayev, Pavel P ; König, Elio J ; Salehi, Maryam ; Moon, Jisoo ; Han, Myung-Geun ; Oh, Seongshik ; Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><description>The search for new topological materials and states of matter is presently at the forefront of quantum materials research. One powerful approach to novel topological phases beyond the thermodynamic space is to combine different topological/functional materials into a single materials platform in the form of superlattices. However, despite some previous efforts there has been a significant gap between theories and experiments in this direction. Here, we provide the first detailed set of experimentally verifiable phase diagrams of topological superlattices composed of archetypal topological insulator, Bi2Se3, and normal insulator, In2Se3, by combining molecular-level materials control, low-temperature magnetotransport measurements, and field theoretical calculations. We show how the electronic properties of topological superlattices evolve with unit-layer thicknesses and utilize the weak antilocalization effect as a tool to gain quantitative insights into the evolution of conducting channels within each set of heterostructures. This orchestrated study opens the door to the possibility of creating a variety of artificial-topological-phases by combining topological materials with various other functional building blocks such as superconductors and magnetic materials.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.8b03751</identifier><identifier>PMID: 30663307</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; phase diagrams ; Superlattices ; topological insulators ; weak antilocalization</subject><ispartof>Nano letters, 2019-02, Vol.19 (2), p.716-721</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a441t-c07f94e13e7999ad8a81edfc1d62ce4aa78ea8bfaab6db13a1130995bcad9b983</citedby><cites>FETCH-LOGICAL-a441t-c07f94e13e7999ad8a81edfc1d62ce4aa78ea8bfaab6db13a1130995bcad9b983</cites><orcidid>0000-0002-7214-5706 ; 0000-0003-2123-6349 ; 0000-0003-1681-516X ; 0000000321236349 ; 000000031681516X ; 0000000272145706</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30663307$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1504373$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Shibayev, Pavel P</creatorcontrib><creatorcontrib>König, Elio J</creatorcontrib><creatorcontrib>Salehi, Maryam</creatorcontrib><creatorcontrib>Moon, Jisoo</creatorcontrib><creatorcontrib>Han, Myung-Geun</creatorcontrib><creatorcontrib>Oh, Seongshik</creatorcontrib><creatorcontrib>Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><title>Engineering Topological Superlattices and Phase Diagrams</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>The search for new topological materials and states of matter is presently at the forefront of quantum materials research. One powerful approach to novel topological phases beyond the thermodynamic space is to combine different topological/functional materials into a single materials platform in the form of superlattices. However, despite some previous efforts there has been a significant gap between theories and experiments in this direction. Here, we provide the first detailed set of experimentally verifiable phase diagrams of topological superlattices composed of archetypal topological insulator, Bi2Se3, and normal insulator, In2Se3, by combining molecular-level materials control, low-temperature magnetotransport measurements, and field theoretical calculations. We show how the electronic properties of topological superlattices evolve with unit-layer thicknesses and utilize the weak antilocalization effect as a tool to gain quantitative insights into the evolution of conducting channels within each set of heterostructures. This orchestrated study opens the door to the possibility of creating a variety of artificial-topological-phases by combining topological materials with various other functional building blocks such as superconductors and magnetic materials.</description><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>phase diagrams</subject><subject>Superlattices</subject><subject>topological insulators</subject><subject>weak antilocalization</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EoqXwBwhFrNi02HFeXqJSHlIlkChra-JMUlepXWxnwd-TKm2XrOYuzr0jHUJuGZ0xGrNHUH5mwNgWQ5gVJeV5ys7ImKWcTjMh4vNTLpIRufJ-QykVPKWXZMRplnFO8zEpFqbRBtFp00Qru7OtbbSCNvrqduhaCEEr9BGYKvpcg8foWUPjYOuvyUUNrcebw52Q75fFav42XX68vs-fllNIEhamiua1SJBxzIUQUBVQMKxqxaosVpgA5AVCUdYAZVaVjANjnAqRlgoqUYqCT8j9sGt90NIrHVCtlTUGVZAspQnPeQ89DNDO2Z8OfZBb7RW2LRi0nZcxywUXCef7vWRAlbPeO6zlzuktuF_JqNyLlb1YeRQrD2L72t3hQ1dusTqVjiZ7gA7Avr6xnTO9lf83_wAk1ohZ</recordid><startdate>20190213</startdate><enddate>20190213</enddate><creator>Shibayev, Pavel P</creator><creator>König, Elio J</creator><creator>Salehi, Maryam</creator><creator>Moon, Jisoo</creator><creator>Han, Myung-Geun</creator><creator>Oh, Seongshik</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-7214-5706</orcidid><orcidid>https://orcid.org/0000-0003-2123-6349</orcidid><orcidid>https://orcid.org/0000-0003-1681-516X</orcidid><orcidid>https://orcid.org/0000000321236349</orcidid><orcidid>https://orcid.org/000000031681516X</orcidid><orcidid>https://orcid.org/0000000272145706</orcidid></search><sort><creationdate>20190213</creationdate><title>Engineering Topological Superlattices and Phase Diagrams</title><author>Shibayev, Pavel P ; König, Elio J ; Salehi, Maryam ; Moon, Jisoo ; Han, Myung-Geun ; Oh, Seongshik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a441t-c07f94e13e7999ad8a81edfc1d62ce4aa78ea8bfaab6db13a1130995bcad9b983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>phase diagrams</topic><topic>Superlattices</topic><topic>topological insulators</topic><topic>weak antilocalization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shibayev, Pavel P</creatorcontrib><creatorcontrib>König, Elio J</creatorcontrib><creatorcontrib>Salehi, Maryam</creatorcontrib><creatorcontrib>Moon, Jisoo</creatorcontrib><creatorcontrib>Han, Myung-Geun</creatorcontrib><creatorcontrib>Oh, Seongshik</creatorcontrib><creatorcontrib>Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shibayev, Pavel P</au><au>König, Elio J</au><au>Salehi, Maryam</au><au>Moon, Jisoo</au><au>Han, Myung-Geun</au><au>Oh, Seongshik</au><aucorp>Brookhaven National Lab. (BNL), Upton, NY (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering Topological Superlattices and Phase Diagrams</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2019-02-13</date><risdate>2019</risdate><volume>19</volume><issue>2</issue><spage>716</spage><epage>721</epage><pages>716-721</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>The search for new topological materials and states of matter is presently at the forefront of quantum materials research. One powerful approach to novel topological phases beyond the thermodynamic space is to combine different topological/functional materials into a single materials platform in the form of superlattices. However, despite some previous efforts there has been a significant gap between theories and experiments in this direction. Here, we provide the first detailed set of experimentally verifiable phase diagrams of topological superlattices composed of archetypal topological insulator, Bi2Se3, and normal insulator, In2Se3, by combining molecular-level materials control, low-temperature magnetotransport measurements, and field theoretical calculations. We show how the electronic properties of topological superlattices evolve with unit-layer thicknesses and utilize the weak antilocalization effect as a tool to gain quantitative insights into the evolution of conducting channels within each set of heterostructures. This orchestrated study opens the door to the possibility of creating a variety of artificial-topological-phases by combining topological materials with various other functional building blocks such as superconductors and magnetic materials.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30663307</pmid><doi>10.1021/acs.nanolett.8b03751</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-7214-5706</orcidid><orcidid>https://orcid.org/0000-0003-2123-6349</orcidid><orcidid>https://orcid.org/0000-0003-1681-516X</orcidid><orcidid>https://orcid.org/0000000321236349</orcidid><orcidid>https://orcid.org/000000031681516X</orcidid><orcidid>https://orcid.org/0000000272145706</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2019-02, Vol.19 (2), p.716-721
issn 1530-6984
1530-6992
language eng
recordid cdi_osti_scitechconnect_1504373
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
phase diagrams
Superlattices
topological insulators
weak antilocalization
title Engineering Topological Superlattices and Phase Diagrams
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T05%3A46%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20Topological%20Superlattices%20and%20Phase%20Diagrams&rft.jtitle=Nano%20letters&rft.au=Shibayev,%20Pavel%20P&rft.aucorp=Brookhaven%20National%20Lab.%20(BNL),%20Upton,%20NY%20(United%20States)&rft.date=2019-02-13&rft.volume=19&rft.issue=2&rft.spage=716&rft.epage=721&rft.pages=716-721&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.8b03751&rft_dat=%3Cproquest_osti_%3E2179394338%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a441t-c07f94e13e7999ad8a81edfc1d62ce4aa78ea8bfaab6db13a1130995bcad9b983%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2179394338&rft_id=info:pmid/30663307&rfr_iscdi=true