Loading…

Highly Efficient Solar-Driven Carbon Dioxide Reduction on Molybdenum Disulfide Catalyst Using Choline Chloride-Based Electrolyte

Conversion of CO2 to energy-rich chemicals using renewable energy is of much interest to close the anthropogenic carbon cycle. However, the current photoelectrochemical systems are still far from being practically feasible. Here the successful demonstration of a continuous, energy efficient, and sca...

Full description

Saved in:
Bibliographic Details
Published in:Advanced energy materials 2019-01, Vol.9 (9)
Main Authors: Asadi, Mohammad, Motevaselian, Mohammad Hossein, Moradzadeh, Alireza, Majidi, Leily, Esmaeilirad, Mohammadreza, Sun, Tao Victor, Liu, Cong, Bose, Rumki, Abbasi, Pedram, Zapol, Peter, Khodadoust, Amid P., Curtiss, Larry A., Aluru, Narayana R., Salehi-Khojin, Amin
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 9
container_start_page
container_title Advanced energy materials
container_volume 9
creator Asadi, Mohammad
Motevaselian, Mohammad Hossein
Moradzadeh, Alireza
Majidi, Leily
Esmaeilirad, Mohammadreza
Sun, Tao Victor
Liu, Cong
Bose, Rumki
Abbasi, Pedram
Zapol, Peter
Khodadoust, Amid P.
Curtiss, Larry A.
Aluru, Narayana R.
Salehi-Khojin, Amin
description Conversion of CO2 to energy-rich chemicals using renewable energy is of much interest to close the anthropogenic carbon cycle. However, the current photoelectrochemical systems are still far from being practically feasible. Here the successful demonstration of a continuous, energy efficient, and scalable solar-driven CO2 reduction process based on earth-abundant molybdenum disulfide (MoS2) catalyst, which works in synergy with an inexpensive hybrid electrolyte of choline chloride (a common food additive for livestock) and potassium hydroxide (KOH) is reported. The CO(2 )saturated hybrid electrolyte utilized in this study also acts as a buffer solution (pH approximate to 7.6) to adjust pH during the reactions. This study reveals that this system can efficiently convert CO(2 )to CO with solar-to-fuel and catalytic conversion efficiencies of 23% and 83%, respectively. Using density functional theory calculations, a new reaction mechanism in which the water molecules near the MoS(2 )cathode act as proton donors to facilitate the CO2 reduction process by MoS2 catalyst is proposed. This demonstration of a continuous, cost-effective, and energy efficient solar driven CO2 conversion process is a key step toward the industrialization of this technology.
doi_str_mv 10.1002/aenm.201803536
format article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1505604</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1505604</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_15056043</originalsourceid><addsrcrecordid>eNqNSz1PwzAUtBCVqGhXZos95TlOorKSBnVh4WOuXOeleci1JT8HkY2fjpEQM6eT7nQfQtwo2CiA8s6gP29KUFvQtW4uxFI1qiqabQWXf16XV2LN_A4Z1b0CrZfia0-n0c2yGwayhD7Jl-BMLHaRPtDL1sRj8HJH4ZN6lM_YTzZRTjKfgpuPPfrpnHue3PCzaE0ybuYk35j8SbZjcORzPLoQc188GMZedg5tivmfcCUWg3GM61-9FreP3Wu7LwInOrClhHa0wfv8OKga6gYq_a_RN8TmV5o</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Highly Efficient Solar-Driven Carbon Dioxide Reduction on Molybdenum Disulfide Catalyst Using Choline Chloride-Based Electrolyte</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Asadi, Mohammad ; Motevaselian, Mohammad Hossein ; Moradzadeh, Alireza ; Majidi, Leily ; Esmaeilirad, Mohammadreza ; Sun, Tao Victor ; Liu, Cong ; Bose, Rumki ; Abbasi, Pedram ; Zapol, Peter ; Khodadoust, Amid P. ; Curtiss, Larry A. ; Aluru, Narayana R. ; Salehi-Khojin, Amin</creator><creatorcontrib>Asadi, Mohammad ; Motevaselian, Mohammad Hossein ; Moradzadeh, Alireza ; Majidi, Leily ; Esmaeilirad, Mohammadreza ; Sun, Tao Victor ; Liu, Cong ; Bose, Rumki ; Abbasi, Pedram ; Zapol, Peter ; Khodadoust, Amid P. ; Curtiss, Larry A. ; Aluru, Narayana R. ; Salehi-Khojin, Amin ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>Conversion of CO2 to energy-rich chemicals using renewable energy is of much interest to close the anthropogenic carbon cycle. However, the current photoelectrochemical systems are still far from being practically feasible. Here the successful demonstration of a continuous, energy efficient, and scalable solar-driven CO2 reduction process based on earth-abundant molybdenum disulfide (MoS2) catalyst, which works in synergy with an inexpensive hybrid electrolyte of choline chloride (a common food additive for livestock) and potassium hydroxide (KOH) is reported. The CO(2 )saturated hybrid electrolyte utilized in this study also acts as a buffer solution (pH approximate to 7.6) to adjust pH during the reactions. This study reveals that this system can efficiently convert CO(2 )to CO with solar-to-fuel and catalytic conversion efficiencies of 23% and 83%, respectively. Using density functional theory calculations, a new reaction mechanism in which the water molecules near the MoS(2 )cathode act as proton donors to facilitate the CO2 reduction process by MoS2 catalyst is proposed. This demonstration of a continuous, cost-effective, and energy efficient solar driven CO2 conversion process is a key step toward the industrialization of this technology.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.201803536</identifier><language>eng</language><publisher>United States: Wiley</publisher><subject>flow cells ; photochemical ; photoelectrochemical ; solar to fuel conversion</subject><ispartof>Advanced energy materials, 2019-01, Vol.9 (9)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000280585648</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1505604$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Asadi, Mohammad</creatorcontrib><creatorcontrib>Motevaselian, Mohammad Hossein</creatorcontrib><creatorcontrib>Moradzadeh, Alireza</creatorcontrib><creatorcontrib>Majidi, Leily</creatorcontrib><creatorcontrib>Esmaeilirad, Mohammadreza</creatorcontrib><creatorcontrib>Sun, Tao Victor</creatorcontrib><creatorcontrib>Liu, Cong</creatorcontrib><creatorcontrib>Bose, Rumki</creatorcontrib><creatorcontrib>Abbasi, Pedram</creatorcontrib><creatorcontrib>Zapol, Peter</creatorcontrib><creatorcontrib>Khodadoust, Amid P.</creatorcontrib><creatorcontrib>Curtiss, Larry A.</creatorcontrib><creatorcontrib>Aluru, Narayana R.</creatorcontrib><creatorcontrib>Salehi-Khojin, Amin</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Highly Efficient Solar-Driven Carbon Dioxide Reduction on Molybdenum Disulfide Catalyst Using Choline Chloride-Based Electrolyte</title><title>Advanced energy materials</title><description>Conversion of CO2 to energy-rich chemicals using renewable energy is of much interest to close the anthropogenic carbon cycle. However, the current photoelectrochemical systems are still far from being practically feasible. Here the successful demonstration of a continuous, energy efficient, and scalable solar-driven CO2 reduction process based on earth-abundant molybdenum disulfide (MoS2) catalyst, which works in synergy with an inexpensive hybrid electrolyte of choline chloride (a common food additive for livestock) and potassium hydroxide (KOH) is reported. The CO(2 )saturated hybrid electrolyte utilized in this study also acts as a buffer solution (pH approximate to 7.6) to adjust pH during the reactions. This study reveals that this system can efficiently convert CO(2 )to CO with solar-to-fuel and catalytic conversion efficiencies of 23% and 83%, respectively. Using density functional theory calculations, a new reaction mechanism in which the water molecules near the MoS(2 )cathode act as proton donors to facilitate the CO2 reduction process by MoS2 catalyst is proposed. This demonstration of a continuous, cost-effective, and energy efficient solar driven CO2 conversion process is a key step toward the industrialization of this technology.</description><subject>flow cells</subject><subject>photochemical</subject><subject>photoelectrochemical</subject><subject>solar to fuel conversion</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNSz1PwzAUtBCVqGhXZos95TlOorKSBnVh4WOuXOeleci1JT8HkY2fjpEQM6eT7nQfQtwo2CiA8s6gP29KUFvQtW4uxFI1qiqabQWXf16XV2LN_A4Z1b0CrZfia0-n0c2yGwayhD7Jl-BMLHaRPtDL1sRj8HJH4ZN6lM_YTzZRTjKfgpuPPfrpnHue3PCzaE0ybuYk35j8SbZjcORzPLoQc188GMZedg5tivmfcCUWg3GM61-9FreP3Wu7LwInOrClhHa0wfv8OKga6gYq_a_RN8TmV5o</recordid><startdate>20190121</startdate><enddate>20190121</enddate><creator>Asadi, Mohammad</creator><creator>Motevaselian, Mohammad Hossein</creator><creator>Moradzadeh, Alireza</creator><creator>Majidi, Leily</creator><creator>Esmaeilirad, Mohammadreza</creator><creator>Sun, Tao Victor</creator><creator>Liu, Cong</creator><creator>Bose, Rumki</creator><creator>Abbasi, Pedram</creator><creator>Zapol, Peter</creator><creator>Khodadoust, Amid P.</creator><creator>Curtiss, Larry A.</creator><creator>Aluru, Narayana R.</creator><creator>Salehi-Khojin, Amin</creator><general>Wiley</general><scope>OTOTI</scope><orcidid>https://orcid.org/0000000280585648</orcidid></search><sort><creationdate>20190121</creationdate><title>Highly Efficient Solar-Driven Carbon Dioxide Reduction on Molybdenum Disulfide Catalyst Using Choline Chloride-Based Electrolyte</title><author>Asadi, Mohammad ; Motevaselian, Mohammad Hossein ; Moradzadeh, Alireza ; Majidi, Leily ; Esmaeilirad, Mohammadreza ; Sun, Tao Victor ; Liu, Cong ; Bose, Rumki ; Abbasi, Pedram ; Zapol, Peter ; Khodadoust, Amid P. ; Curtiss, Larry A. ; Aluru, Narayana R. ; Salehi-Khojin, Amin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_15056043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>flow cells</topic><topic>photochemical</topic><topic>photoelectrochemical</topic><topic>solar to fuel conversion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Asadi, Mohammad</creatorcontrib><creatorcontrib>Motevaselian, Mohammad Hossein</creatorcontrib><creatorcontrib>Moradzadeh, Alireza</creatorcontrib><creatorcontrib>Majidi, Leily</creatorcontrib><creatorcontrib>Esmaeilirad, Mohammadreza</creatorcontrib><creatorcontrib>Sun, Tao Victor</creatorcontrib><creatorcontrib>Liu, Cong</creatorcontrib><creatorcontrib>Bose, Rumki</creatorcontrib><creatorcontrib>Abbasi, Pedram</creatorcontrib><creatorcontrib>Zapol, Peter</creatorcontrib><creatorcontrib>Khodadoust, Amid P.</creatorcontrib><creatorcontrib>Curtiss, Larry A.</creatorcontrib><creatorcontrib>Aluru, Narayana R.</creatorcontrib><creatorcontrib>Salehi-Khojin, Amin</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>OSTI.GOV</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Asadi, Mohammad</au><au>Motevaselian, Mohammad Hossein</au><au>Moradzadeh, Alireza</au><au>Majidi, Leily</au><au>Esmaeilirad, Mohammadreza</au><au>Sun, Tao Victor</au><au>Liu, Cong</au><au>Bose, Rumki</au><au>Abbasi, Pedram</au><au>Zapol, Peter</au><au>Khodadoust, Amid P.</au><au>Curtiss, Larry A.</au><au>Aluru, Narayana R.</au><au>Salehi-Khojin, Amin</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly Efficient Solar-Driven Carbon Dioxide Reduction on Molybdenum Disulfide Catalyst Using Choline Chloride-Based Electrolyte</atitle><jtitle>Advanced energy materials</jtitle><date>2019-01-21</date><risdate>2019</risdate><volume>9</volume><issue>9</issue><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Conversion of CO2 to energy-rich chemicals using renewable energy is of much interest to close the anthropogenic carbon cycle. However, the current photoelectrochemical systems are still far from being practically feasible. Here the successful demonstration of a continuous, energy efficient, and scalable solar-driven CO2 reduction process based on earth-abundant molybdenum disulfide (MoS2) catalyst, which works in synergy with an inexpensive hybrid electrolyte of choline chloride (a common food additive for livestock) and potassium hydroxide (KOH) is reported. The CO(2 )saturated hybrid electrolyte utilized in this study also acts as a buffer solution (pH approximate to 7.6) to adjust pH during the reactions. This study reveals that this system can efficiently convert CO(2 )to CO with solar-to-fuel and catalytic conversion efficiencies of 23% and 83%, respectively. Using density functional theory calculations, a new reaction mechanism in which the water molecules near the MoS(2 )cathode act as proton donors to facilitate the CO2 reduction process by MoS2 catalyst is proposed. This demonstration of a continuous, cost-effective, and energy efficient solar driven CO2 conversion process is a key step toward the industrialization of this technology.</abstract><cop>United States</cop><pub>Wiley</pub><doi>10.1002/aenm.201803536</doi><orcidid>https://orcid.org/0000000280585648</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2019-01, Vol.9 (9)
issn 1614-6832
1614-6840
language eng
recordid cdi_osti_scitechconnect_1505604
source Wiley-Blackwell Read & Publish Collection
subjects flow cells
photochemical
photoelectrochemical
solar to fuel conversion
title Highly Efficient Solar-Driven Carbon Dioxide Reduction on Molybdenum Disulfide Catalyst Using Choline Chloride-Based Electrolyte
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T23%3A30%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20Efficient%20Solar-Driven%20Carbon%20Dioxide%20Reduction%20on%20Molybdenum%20Disulfide%20Catalyst%20Using%20Choline%20Chloride-Based%20Electrolyte&rft.jtitle=Advanced%20energy%20materials&rft.au=Asadi,%20Mohammad&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2019-01-21&rft.volume=9&rft.issue=9&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.201803536&rft_dat=%3Costi%3E1505604%3C/osti%3E%3Cgrp_id%3Ecdi_FETCH-osti_scitechconnect_15056043%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true