Loading…
Highly Efficient Solar-Driven Carbon Dioxide Reduction on Molybdenum Disulfide Catalyst Using Choline Chloride-Based Electrolyte
Conversion of CO2 to energy-rich chemicals using renewable energy is of much interest to close the anthropogenic carbon cycle. However, the current photoelectrochemical systems are still far from being practically feasible. Here the successful demonstration of a continuous, energy efficient, and sca...
Saved in:
Published in: | Advanced energy materials 2019-01, Vol.9 (9) |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 9 |
container_start_page | |
container_title | Advanced energy materials |
container_volume | 9 |
creator | Asadi, Mohammad Motevaselian, Mohammad Hossein Moradzadeh, Alireza Majidi, Leily Esmaeilirad, Mohammadreza Sun, Tao Victor Liu, Cong Bose, Rumki Abbasi, Pedram Zapol, Peter Khodadoust, Amid P. Curtiss, Larry A. Aluru, Narayana R. Salehi-Khojin, Amin |
description | Conversion of CO2 to energy-rich chemicals using renewable energy is of much interest to close the anthropogenic carbon cycle. However, the current photoelectrochemical systems are still far from being practically feasible. Here the successful demonstration of a continuous, energy efficient, and scalable solar-driven CO2 reduction process based on earth-abundant molybdenum disulfide (MoS2) catalyst, which works in synergy with an inexpensive hybrid electrolyte of choline chloride (a common food additive for livestock) and potassium hydroxide (KOH) is reported. The CO(2 )saturated hybrid electrolyte utilized in this study also acts as a buffer solution (pH approximate to 7.6) to adjust pH during the reactions. This study reveals that this system can efficiently convert CO(2 )to CO with solar-to-fuel and catalytic conversion efficiencies of 23% and 83%, respectively. Using density functional theory calculations, a new reaction mechanism in which the water molecules near the MoS(2 )cathode act as proton donors to facilitate the CO2 reduction process by MoS2 catalyst is proposed. This demonstration of a continuous, cost-effective, and energy efficient solar driven CO2 conversion process is a key step toward the industrialization of this technology. |
doi_str_mv | 10.1002/aenm.201803536 |
format | article |
fullrecord | <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1505604</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1505604</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_15056043</originalsourceid><addsrcrecordid>eNqNSz1PwzAUtBCVqGhXZos95TlOorKSBnVh4WOuXOeleci1JT8HkY2fjpEQM6eT7nQfQtwo2CiA8s6gP29KUFvQtW4uxFI1qiqabQWXf16XV2LN_A4Z1b0CrZfia0-n0c2yGwayhD7Jl-BMLHaRPtDL1sRj8HJH4ZN6lM_YTzZRTjKfgpuPPfrpnHue3PCzaE0ybuYk35j8SbZjcORzPLoQc188GMZedg5tivmfcCUWg3GM61-9FreP3Wu7LwInOrClhHa0wfv8OKga6gYq_a_RN8TmV5o</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Highly Efficient Solar-Driven Carbon Dioxide Reduction on Molybdenum Disulfide Catalyst Using Choline Chloride-Based Electrolyte</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Asadi, Mohammad ; Motevaselian, Mohammad Hossein ; Moradzadeh, Alireza ; Majidi, Leily ; Esmaeilirad, Mohammadreza ; Sun, Tao Victor ; Liu, Cong ; Bose, Rumki ; Abbasi, Pedram ; Zapol, Peter ; Khodadoust, Amid P. ; Curtiss, Larry A. ; Aluru, Narayana R. ; Salehi-Khojin, Amin</creator><creatorcontrib>Asadi, Mohammad ; Motevaselian, Mohammad Hossein ; Moradzadeh, Alireza ; Majidi, Leily ; Esmaeilirad, Mohammadreza ; Sun, Tao Victor ; Liu, Cong ; Bose, Rumki ; Abbasi, Pedram ; Zapol, Peter ; Khodadoust, Amid P. ; Curtiss, Larry A. ; Aluru, Narayana R. ; Salehi-Khojin, Amin ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>Conversion of CO2 to energy-rich chemicals using renewable energy is of much interest to close the anthropogenic carbon cycle. However, the current photoelectrochemical systems are still far from being practically feasible. Here the successful demonstration of a continuous, energy efficient, and scalable solar-driven CO2 reduction process based on earth-abundant molybdenum disulfide (MoS2) catalyst, which works in synergy with an inexpensive hybrid electrolyte of choline chloride (a common food additive for livestock) and potassium hydroxide (KOH) is reported. The CO(2 )saturated hybrid electrolyte utilized in this study also acts as a buffer solution (pH approximate to 7.6) to adjust pH during the reactions. This study reveals that this system can efficiently convert CO(2 )to CO with solar-to-fuel and catalytic conversion efficiencies of 23% and 83%, respectively. Using density functional theory calculations, a new reaction mechanism in which the water molecules near the MoS(2 )cathode act as proton donors to facilitate the CO2 reduction process by MoS2 catalyst is proposed. This demonstration of a continuous, cost-effective, and energy efficient solar driven CO2 conversion process is a key step toward the industrialization of this technology.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.201803536</identifier><language>eng</language><publisher>United States: Wiley</publisher><subject>flow cells ; photochemical ; photoelectrochemical ; solar to fuel conversion</subject><ispartof>Advanced energy materials, 2019-01, Vol.9 (9)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000280585648</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1505604$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Asadi, Mohammad</creatorcontrib><creatorcontrib>Motevaselian, Mohammad Hossein</creatorcontrib><creatorcontrib>Moradzadeh, Alireza</creatorcontrib><creatorcontrib>Majidi, Leily</creatorcontrib><creatorcontrib>Esmaeilirad, Mohammadreza</creatorcontrib><creatorcontrib>Sun, Tao Victor</creatorcontrib><creatorcontrib>Liu, Cong</creatorcontrib><creatorcontrib>Bose, Rumki</creatorcontrib><creatorcontrib>Abbasi, Pedram</creatorcontrib><creatorcontrib>Zapol, Peter</creatorcontrib><creatorcontrib>Khodadoust, Amid P.</creatorcontrib><creatorcontrib>Curtiss, Larry A.</creatorcontrib><creatorcontrib>Aluru, Narayana R.</creatorcontrib><creatorcontrib>Salehi-Khojin, Amin</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Highly Efficient Solar-Driven Carbon Dioxide Reduction on Molybdenum Disulfide Catalyst Using Choline Chloride-Based Electrolyte</title><title>Advanced energy materials</title><description>Conversion of CO2 to energy-rich chemicals using renewable energy is of much interest to close the anthropogenic carbon cycle. However, the current photoelectrochemical systems are still far from being practically feasible. Here the successful demonstration of a continuous, energy efficient, and scalable solar-driven CO2 reduction process based on earth-abundant molybdenum disulfide (MoS2) catalyst, which works in synergy with an inexpensive hybrid electrolyte of choline chloride (a common food additive for livestock) and potassium hydroxide (KOH) is reported. The CO(2 )saturated hybrid electrolyte utilized in this study also acts as a buffer solution (pH approximate to 7.6) to adjust pH during the reactions. This study reveals that this system can efficiently convert CO(2 )to CO with solar-to-fuel and catalytic conversion efficiencies of 23% and 83%, respectively. Using density functional theory calculations, a new reaction mechanism in which the water molecules near the MoS(2 )cathode act as proton donors to facilitate the CO2 reduction process by MoS2 catalyst is proposed. This demonstration of a continuous, cost-effective, and energy efficient solar driven CO2 conversion process is a key step toward the industrialization of this technology.</description><subject>flow cells</subject><subject>photochemical</subject><subject>photoelectrochemical</subject><subject>solar to fuel conversion</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNSz1PwzAUtBCVqGhXZos95TlOorKSBnVh4WOuXOeleci1JT8HkY2fjpEQM6eT7nQfQtwo2CiA8s6gP29KUFvQtW4uxFI1qiqabQWXf16XV2LN_A4Z1b0CrZfia0-n0c2yGwayhD7Jl-BMLHaRPtDL1sRj8HJH4ZN6lM_YTzZRTjKfgpuPPfrpnHue3PCzaE0ybuYk35j8SbZjcORzPLoQc188GMZedg5tivmfcCUWg3GM61-9FreP3Wu7LwInOrClhHa0wfv8OKga6gYq_a_RN8TmV5o</recordid><startdate>20190121</startdate><enddate>20190121</enddate><creator>Asadi, Mohammad</creator><creator>Motevaselian, Mohammad Hossein</creator><creator>Moradzadeh, Alireza</creator><creator>Majidi, Leily</creator><creator>Esmaeilirad, Mohammadreza</creator><creator>Sun, Tao Victor</creator><creator>Liu, Cong</creator><creator>Bose, Rumki</creator><creator>Abbasi, Pedram</creator><creator>Zapol, Peter</creator><creator>Khodadoust, Amid P.</creator><creator>Curtiss, Larry A.</creator><creator>Aluru, Narayana R.</creator><creator>Salehi-Khojin, Amin</creator><general>Wiley</general><scope>OTOTI</scope><orcidid>https://orcid.org/0000000280585648</orcidid></search><sort><creationdate>20190121</creationdate><title>Highly Efficient Solar-Driven Carbon Dioxide Reduction on Molybdenum Disulfide Catalyst Using Choline Chloride-Based Electrolyte</title><author>Asadi, Mohammad ; Motevaselian, Mohammad Hossein ; Moradzadeh, Alireza ; Majidi, Leily ; Esmaeilirad, Mohammadreza ; Sun, Tao Victor ; Liu, Cong ; Bose, Rumki ; Abbasi, Pedram ; Zapol, Peter ; Khodadoust, Amid P. ; Curtiss, Larry A. ; Aluru, Narayana R. ; Salehi-Khojin, Amin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_15056043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>flow cells</topic><topic>photochemical</topic><topic>photoelectrochemical</topic><topic>solar to fuel conversion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Asadi, Mohammad</creatorcontrib><creatorcontrib>Motevaselian, Mohammad Hossein</creatorcontrib><creatorcontrib>Moradzadeh, Alireza</creatorcontrib><creatorcontrib>Majidi, Leily</creatorcontrib><creatorcontrib>Esmaeilirad, Mohammadreza</creatorcontrib><creatorcontrib>Sun, Tao Victor</creatorcontrib><creatorcontrib>Liu, Cong</creatorcontrib><creatorcontrib>Bose, Rumki</creatorcontrib><creatorcontrib>Abbasi, Pedram</creatorcontrib><creatorcontrib>Zapol, Peter</creatorcontrib><creatorcontrib>Khodadoust, Amid P.</creatorcontrib><creatorcontrib>Curtiss, Larry A.</creatorcontrib><creatorcontrib>Aluru, Narayana R.</creatorcontrib><creatorcontrib>Salehi-Khojin, Amin</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>OSTI.GOV</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Asadi, Mohammad</au><au>Motevaselian, Mohammad Hossein</au><au>Moradzadeh, Alireza</au><au>Majidi, Leily</au><au>Esmaeilirad, Mohammadreza</au><au>Sun, Tao Victor</au><au>Liu, Cong</au><au>Bose, Rumki</au><au>Abbasi, Pedram</au><au>Zapol, Peter</au><au>Khodadoust, Amid P.</au><au>Curtiss, Larry A.</au><au>Aluru, Narayana R.</au><au>Salehi-Khojin, Amin</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly Efficient Solar-Driven Carbon Dioxide Reduction on Molybdenum Disulfide Catalyst Using Choline Chloride-Based Electrolyte</atitle><jtitle>Advanced energy materials</jtitle><date>2019-01-21</date><risdate>2019</risdate><volume>9</volume><issue>9</issue><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Conversion of CO2 to energy-rich chemicals using renewable energy is of much interest to close the anthropogenic carbon cycle. However, the current photoelectrochemical systems are still far from being practically feasible. Here the successful demonstration of a continuous, energy efficient, and scalable solar-driven CO2 reduction process based on earth-abundant molybdenum disulfide (MoS2) catalyst, which works in synergy with an inexpensive hybrid electrolyte of choline chloride (a common food additive for livestock) and potassium hydroxide (KOH) is reported. The CO(2 )saturated hybrid electrolyte utilized in this study also acts as a buffer solution (pH approximate to 7.6) to adjust pH during the reactions. This study reveals that this system can efficiently convert CO(2 )to CO with solar-to-fuel and catalytic conversion efficiencies of 23% and 83%, respectively. Using density functional theory calculations, a new reaction mechanism in which the water molecules near the MoS(2 )cathode act as proton donors to facilitate the CO2 reduction process by MoS2 catalyst is proposed. This demonstration of a continuous, cost-effective, and energy efficient solar driven CO2 conversion process is a key step toward the industrialization of this technology.</abstract><cop>United States</cop><pub>Wiley</pub><doi>10.1002/aenm.201803536</doi><orcidid>https://orcid.org/0000000280585648</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1614-6832 |
ispartof | Advanced energy materials, 2019-01, Vol.9 (9) |
issn | 1614-6832 1614-6840 |
language | eng |
recordid | cdi_osti_scitechconnect_1505604 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | flow cells photochemical photoelectrochemical solar to fuel conversion |
title | Highly Efficient Solar-Driven Carbon Dioxide Reduction on Molybdenum Disulfide Catalyst Using Choline Chloride-Based Electrolyte |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T23%3A30%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20Efficient%20Solar-Driven%20Carbon%20Dioxide%20Reduction%20on%20Molybdenum%20Disulfide%20Catalyst%20Using%20Choline%20Chloride-Based%20Electrolyte&rft.jtitle=Advanced%20energy%20materials&rft.au=Asadi,%20Mohammad&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2019-01-21&rft.volume=9&rft.issue=9&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.201803536&rft_dat=%3Costi%3E1505604%3C/osti%3E%3Cgrp_id%3Ecdi_FETCH-osti_scitechconnect_15056043%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |