Loading…
Theory of Surrogate Nuclear and Atomic Reactions with Three Charged Particles in the Final State Proceeding Through a Resonance in the Intermediate Subsystem
Within a few-body formalism, we develop a general theory of surrogate nuclear and atomic reactions with excitation of a resonance in the intermediate binary subsystem leading to three charged particles in the final state. The Coulomb interactions between the spectator and the resonance in the interm...
Saved in:
Published in: | Few-body systems 2019-06, Vol.60 (2), p.1-16, Article 27 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Within a few-body formalism, we develop a general theory of surrogate nuclear and atomic reactions with excitation of a resonance in the intermediate binary subsystem leading to three charged particles in the final state. The Coulomb interactions between the spectator and the resonance in the intermediate state and between the three particles in the final state are taken into account. Final-state three-body Coulomb multiple-scattering effects are accounted for using the formalism of the three-body Coulomb asymptotic states based on the work published by one of us (A.M.M.) under the guidance of L. D. Faddeev. An expression is derived for the triply differential cross section. It can be used for investigation of the Coulomb effects on the resonance line shape as well as the energy dependence of the cross section. We find that simultaneous inclusion of the Coulomb effects in the intermediate and final state decreases the effect of the final-state Coulomb interactions on the triply differential cross section. |
---|---|
ISSN: | 0177-7963 1432-5411 |
DOI: | 10.1007/s00601-019-1489-9 |