Loading…
Genome-centric view of carbon processing in thawing permafrost
As global temperatures rise, large amounts of carbon sequestered in permafrost are becoming available for microbial degradation. Accurate prediction of carbon gas emissions from thawing permafrost is limited by our understanding of these microbial communities. Here we use metagenomic sequencing of 2...
Saved in:
Published in: | Nature (London) 2018-07, Vol.560 (7716) |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 7716 |
container_start_page | |
container_title | Nature (London) |
container_volume | 560 |
creator | Woodcroft, Ben J. Singleton, Caitlin M. Boyd, Joel A. Evans, Paul N. Emerson, Joanne B. Zayed, Ahmed A. F. Hoelzle, Robert D. Lamberton, Timothy O. McCalley, Carmody K. Hodgkins, Suzanne B. Wilson, Rachel M. Purvine, Samuel O. Nicora, Carrie D. Li, Changsheng Frolking, Steve Chanton, Jeffrey P. Crill, Patrick M. Saleska, Scott R. Rich, Virginia I. Tyson, Gene W. |
description | As global temperatures rise, large amounts of carbon sequestered in permafrost are becoming available for microbial degradation. Accurate prediction of carbon gas emissions from thawing permafrost is limited by our understanding of these microbial communities. Here we use metagenomic sequencing of 214 samples from a permafrost thaw gradient to recover 1,529 metagenome-assembled genomes, including many from phyla with poor genomic representation. These genomes reflect the diversity of this complex ecosystem, with genus-level representatives for more than sixty per cent of the community. Meta-omic analysis revealed key populations involved in the degradation of organic matter, including bacteria whose genomes encode a previously undescribed fungal pathway for xylose degradation. Microbial and geochemical data highlight lineages that correlate with the production of greenhouse gases and indicate novel syntrophic relationships. Lastly, our findings link changing biogeochemistry to specific microbial lineages involved in carbon processing, and provide key information for predicting the effects of climate change on permafrost systems. |
doi_str_mv | 10.1038/s41586-018-0338-1 |
format | article |
fullrecord | <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1506092</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1506092</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_15060923</originalsourceid><addsrcrecordid>eNqNiksKwjAUAIMoWD8HcBfcR1-aNo0bN-LnAO5LDK82YpOSBHt9FTyAqxmYIWTFYcNBqG0seKkkA64YCKEYH5GMF5VkhVTVmGQA-acoIadkFuMDAEpeFRnZn9H5DplBl4I19GVxoL6hRoebd7QP3mCM1t2pdTS1evhqj6HTTfAxLcik0c-Iyx_nZH06Xg8X9mm2jsYmNK3xzqFJNS9Bwi4Xf01vnEw_Jw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Genome-centric view of carbon processing in thawing permafrost</title><source>Nature</source><creator>Woodcroft, Ben J. ; Singleton, Caitlin M. ; Boyd, Joel A. ; Evans, Paul N. ; Emerson, Joanne B. ; Zayed, Ahmed A. F. ; Hoelzle, Robert D. ; Lamberton, Timothy O. ; McCalley, Carmody K. ; Hodgkins, Suzanne B. ; Wilson, Rachel M. ; Purvine, Samuel O. ; Nicora, Carrie D. ; Li, Changsheng ; Frolking, Steve ; Chanton, Jeffrey P. ; Crill, Patrick M. ; Saleska, Scott R. ; Rich, Virginia I. ; Tyson, Gene W.</creator><creatorcontrib>Woodcroft, Ben J. ; Singleton, Caitlin M. ; Boyd, Joel A. ; Evans, Paul N. ; Emerson, Joanne B. ; Zayed, Ahmed A. F. ; Hoelzle, Robert D. ; Lamberton, Timothy O. ; McCalley, Carmody K. ; Hodgkins, Suzanne B. ; Wilson, Rachel M. ; Purvine, Samuel O. ; Nicora, Carrie D. ; Li, Changsheng ; Frolking, Steve ; Chanton, Jeffrey P. ; Crill, Patrick M. ; Saleska, Scott R. ; Rich, Virginia I. ; Tyson, Gene W. ; Univ. of Queensland, Brisbane, QLD (Australia). Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences</creatorcontrib><description>As global temperatures rise, large amounts of carbon sequestered in permafrost are becoming available for microbial degradation. Accurate prediction of carbon gas emissions from thawing permafrost is limited by our understanding of these microbial communities. Here we use metagenomic sequencing of 214 samples from a permafrost thaw gradient to recover 1,529 metagenome-assembled genomes, including many from phyla with poor genomic representation. These genomes reflect the diversity of this complex ecosystem, with genus-level representatives for more than sixty per cent of the community. Meta-omic analysis revealed key populations involved in the degradation of organic matter, including bacteria whose genomes encode a previously undescribed fungal pathway for xylose degradation. Microbial and geochemical data highlight lineages that correlate with the production of greenhouse gases and indicate novel syntrophic relationships. Lastly, our findings link changing biogeochemistry to specific microbial lineages involved in carbon processing, and provide key information for predicting the effects of climate change on permafrost systems.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-018-0338-1</identifier><language>eng</language><publisher>United States: Nature Publishing Group</publisher><subject>Archaea ; Bacteria ; BASIC BIOLOGICAL SCIENCES ; ENVIRONMENTAL SCIENCES ; GEOSCIENCES ; Metagenomics ; Permafrost</subject><ispartof>Nature (London), 2018-07, Vol.560 (7716)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000222572400 ; 000000030558102X ; 0000000274306219 ; 0000000249743628 ; 0000000204899207 ; 0000000306707480 ; 0000000199835566 ; 0000000196888208 ; 0000000185599427 ; 0000000151318041 ; 0000000324619548 ; 0000000327932679</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1506092$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Woodcroft, Ben J.</creatorcontrib><creatorcontrib>Singleton, Caitlin M.</creatorcontrib><creatorcontrib>Boyd, Joel A.</creatorcontrib><creatorcontrib>Evans, Paul N.</creatorcontrib><creatorcontrib>Emerson, Joanne B.</creatorcontrib><creatorcontrib>Zayed, Ahmed A. F.</creatorcontrib><creatorcontrib>Hoelzle, Robert D.</creatorcontrib><creatorcontrib>Lamberton, Timothy O.</creatorcontrib><creatorcontrib>McCalley, Carmody K.</creatorcontrib><creatorcontrib>Hodgkins, Suzanne B.</creatorcontrib><creatorcontrib>Wilson, Rachel M.</creatorcontrib><creatorcontrib>Purvine, Samuel O.</creatorcontrib><creatorcontrib>Nicora, Carrie D.</creatorcontrib><creatorcontrib>Li, Changsheng</creatorcontrib><creatorcontrib>Frolking, Steve</creatorcontrib><creatorcontrib>Chanton, Jeffrey P.</creatorcontrib><creatorcontrib>Crill, Patrick M.</creatorcontrib><creatorcontrib>Saleska, Scott R.</creatorcontrib><creatorcontrib>Rich, Virginia I.</creatorcontrib><creatorcontrib>Tyson, Gene W.</creatorcontrib><creatorcontrib>Univ. of Queensland, Brisbane, QLD (Australia). Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences</creatorcontrib><title>Genome-centric view of carbon processing in thawing permafrost</title><title>Nature (London)</title><description>As global temperatures rise, large amounts of carbon sequestered in permafrost are becoming available for microbial degradation. Accurate prediction of carbon gas emissions from thawing permafrost is limited by our understanding of these microbial communities. Here we use metagenomic sequencing of 214 samples from a permafrost thaw gradient to recover 1,529 metagenome-assembled genomes, including many from phyla with poor genomic representation. These genomes reflect the diversity of this complex ecosystem, with genus-level representatives for more than sixty per cent of the community. Meta-omic analysis revealed key populations involved in the degradation of organic matter, including bacteria whose genomes encode a previously undescribed fungal pathway for xylose degradation. Microbial and geochemical data highlight lineages that correlate with the production of greenhouse gases and indicate novel syntrophic relationships. Lastly, our findings link changing biogeochemistry to specific microbial lineages involved in carbon processing, and provide key information for predicting the effects of climate change on permafrost systems.</description><subject>Archaea</subject><subject>Bacteria</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>GEOSCIENCES</subject><subject>Metagenomics</subject><subject>Permafrost</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqNiksKwjAUAIMoWD8HcBfcR1-aNo0bN-LnAO5LDK82YpOSBHt9FTyAqxmYIWTFYcNBqG0seKkkA64YCKEYH5GMF5VkhVTVmGQA-acoIadkFuMDAEpeFRnZn9H5DplBl4I19GVxoL6hRoebd7QP3mCM1t2pdTS1evhqj6HTTfAxLcik0c-Iyx_nZH06Xg8X9mm2jsYmNK3xzqFJNS9Bwi4Xf01vnEw_Jw</recordid><startdate>20180716</startdate><enddate>20180716</enddate><creator>Woodcroft, Ben J.</creator><creator>Singleton, Caitlin M.</creator><creator>Boyd, Joel A.</creator><creator>Evans, Paul N.</creator><creator>Emerson, Joanne B.</creator><creator>Zayed, Ahmed A. F.</creator><creator>Hoelzle, Robert D.</creator><creator>Lamberton, Timothy O.</creator><creator>McCalley, Carmody K.</creator><creator>Hodgkins, Suzanne B.</creator><creator>Wilson, Rachel M.</creator><creator>Purvine, Samuel O.</creator><creator>Nicora, Carrie D.</creator><creator>Li, Changsheng</creator><creator>Frolking, Steve</creator><creator>Chanton, Jeffrey P.</creator><creator>Crill, Patrick M.</creator><creator>Saleska, Scott R.</creator><creator>Rich, Virginia I.</creator><creator>Tyson, Gene W.</creator><general>Nature Publishing Group</general><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000222572400</orcidid><orcidid>https://orcid.org/000000030558102X</orcidid><orcidid>https://orcid.org/0000000274306219</orcidid><orcidid>https://orcid.org/0000000249743628</orcidid><orcidid>https://orcid.org/0000000204899207</orcidid><orcidid>https://orcid.org/0000000306707480</orcidid><orcidid>https://orcid.org/0000000199835566</orcidid><orcidid>https://orcid.org/0000000196888208</orcidid><orcidid>https://orcid.org/0000000185599427</orcidid><orcidid>https://orcid.org/0000000151318041</orcidid><orcidid>https://orcid.org/0000000324619548</orcidid><orcidid>https://orcid.org/0000000327932679</orcidid></search><sort><creationdate>20180716</creationdate><title>Genome-centric view of carbon processing in thawing permafrost</title><author>Woodcroft, Ben J. ; Singleton, Caitlin M. ; Boyd, Joel A. ; Evans, Paul N. ; Emerson, Joanne B. ; Zayed, Ahmed A. F. ; Hoelzle, Robert D. ; Lamberton, Timothy O. ; McCalley, Carmody K. ; Hodgkins, Suzanne B. ; Wilson, Rachel M. ; Purvine, Samuel O. ; Nicora, Carrie D. ; Li, Changsheng ; Frolking, Steve ; Chanton, Jeffrey P. ; Crill, Patrick M. ; Saleska, Scott R. ; Rich, Virginia I. ; Tyson, Gene W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_15060923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Archaea</topic><topic>Bacteria</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>GEOSCIENCES</topic><topic>Metagenomics</topic><topic>Permafrost</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Woodcroft, Ben J.</creatorcontrib><creatorcontrib>Singleton, Caitlin M.</creatorcontrib><creatorcontrib>Boyd, Joel A.</creatorcontrib><creatorcontrib>Evans, Paul N.</creatorcontrib><creatorcontrib>Emerson, Joanne B.</creatorcontrib><creatorcontrib>Zayed, Ahmed A. F.</creatorcontrib><creatorcontrib>Hoelzle, Robert D.</creatorcontrib><creatorcontrib>Lamberton, Timothy O.</creatorcontrib><creatorcontrib>McCalley, Carmody K.</creatorcontrib><creatorcontrib>Hodgkins, Suzanne B.</creatorcontrib><creatorcontrib>Wilson, Rachel M.</creatorcontrib><creatorcontrib>Purvine, Samuel O.</creatorcontrib><creatorcontrib>Nicora, Carrie D.</creatorcontrib><creatorcontrib>Li, Changsheng</creatorcontrib><creatorcontrib>Frolking, Steve</creatorcontrib><creatorcontrib>Chanton, Jeffrey P.</creatorcontrib><creatorcontrib>Crill, Patrick M.</creatorcontrib><creatorcontrib>Saleska, Scott R.</creatorcontrib><creatorcontrib>Rich, Virginia I.</creatorcontrib><creatorcontrib>Tyson, Gene W.</creatorcontrib><creatorcontrib>Univ. of Queensland, Brisbane, QLD (Australia). Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Woodcroft, Ben J.</au><au>Singleton, Caitlin M.</au><au>Boyd, Joel A.</au><au>Evans, Paul N.</au><au>Emerson, Joanne B.</au><au>Zayed, Ahmed A. F.</au><au>Hoelzle, Robert D.</au><au>Lamberton, Timothy O.</au><au>McCalley, Carmody K.</au><au>Hodgkins, Suzanne B.</au><au>Wilson, Rachel M.</au><au>Purvine, Samuel O.</au><au>Nicora, Carrie D.</au><au>Li, Changsheng</au><au>Frolking, Steve</au><au>Chanton, Jeffrey P.</au><au>Crill, Patrick M.</au><au>Saleska, Scott R.</au><au>Rich, Virginia I.</au><au>Tyson, Gene W.</au><aucorp>Univ. of Queensland, Brisbane, QLD (Australia). Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genome-centric view of carbon processing in thawing permafrost</atitle><jtitle>Nature (London)</jtitle><date>2018-07-16</date><risdate>2018</risdate><volume>560</volume><issue>7716</issue><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>As global temperatures rise, large amounts of carbon sequestered in permafrost are becoming available for microbial degradation. Accurate prediction of carbon gas emissions from thawing permafrost is limited by our understanding of these microbial communities. Here we use metagenomic sequencing of 214 samples from a permafrost thaw gradient to recover 1,529 metagenome-assembled genomes, including many from phyla with poor genomic representation. These genomes reflect the diversity of this complex ecosystem, with genus-level representatives for more than sixty per cent of the community. Meta-omic analysis revealed key populations involved in the degradation of organic matter, including bacteria whose genomes encode a previously undescribed fungal pathway for xylose degradation. Microbial and geochemical data highlight lineages that correlate with the production of greenhouse gases and indicate novel syntrophic relationships. Lastly, our findings link changing biogeochemistry to specific microbial lineages involved in carbon processing, and provide key information for predicting the effects of climate change on permafrost systems.</abstract><cop>United States</cop><pub>Nature Publishing Group</pub><doi>10.1038/s41586-018-0338-1</doi><orcidid>https://orcid.org/0000000222572400</orcidid><orcidid>https://orcid.org/000000030558102X</orcidid><orcidid>https://orcid.org/0000000274306219</orcidid><orcidid>https://orcid.org/0000000249743628</orcidid><orcidid>https://orcid.org/0000000204899207</orcidid><orcidid>https://orcid.org/0000000306707480</orcidid><orcidid>https://orcid.org/0000000199835566</orcidid><orcidid>https://orcid.org/0000000196888208</orcidid><orcidid>https://orcid.org/0000000185599427</orcidid><orcidid>https://orcid.org/0000000151318041</orcidid><orcidid>https://orcid.org/0000000324619548</orcidid><orcidid>https://orcid.org/0000000327932679</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2018-07, Vol.560 (7716) |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_osti_scitechconnect_1506092 |
source | Nature |
subjects | Archaea Bacteria BASIC BIOLOGICAL SCIENCES ENVIRONMENTAL SCIENCES GEOSCIENCES Metagenomics Permafrost |
title | Genome-centric view of carbon processing in thawing permafrost |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T14%3A14%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genome-centric%20view%20of%20carbon%20processing%20in%20thawing%20permafrost&rft.jtitle=Nature%20(London)&rft.au=Woodcroft,%20Ben%20J.&rft.aucorp=Univ.%20of%20Queensland,%20Brisbane,%20QLD%20(Australia).%20Australian%20Centre%20for%20Ecogenomics,%20School%20of%20Chemistry%20and%20Molecular%20Biosciences&rft.date=2018-07-16&rft.volume=560&rft.issue=7716&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-018-0338-1&rft_dat=%3Costi%3E1506092%3C/osti%3E%3Cgrp_id%3Ecdi_FETCH-osti_scitechconnect_15060923%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |