Loading…

Genome-centric view of carbon processing in thawing permafrost

As global temperatures rise, large amounts of carbon sequestered in permafrost are becoming available for microbial degradation. Accurate prediction of carbon gas emissions from thawing permafrost is limited by our understanding of these microbial communities. Here we use metagenomic sequencing of 2...

Full description

Saved in:
Bibliographic Details
Published in:Nature (London) 2018-07, Vol.560 (7716)
Main Authors: Woodcroft, Ben J., Singleton, Caitlin M., Boyd, Joel A., Evans, Paul N., Emerson, Joanne B., Zayed, Ahmed A. F., Hoelzle, Robert D., Lamberton, Timothy O., McCalley, Carmody K., Hodgkins, Suzanne B., Wilson, Rachel M., Purvine, Samuel O., Nicora, Carrie D., Li, Changsheng, Frolking, Steve, Chanton, Jeffrey P., Crill, Patrick M., Saleska, Scott R., Rich, Virginia I., Tyson, Gene W.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 7716
container_start_page
container_title Nature (London)
container_volume 560
creator Woodcroft, Ben J.
Singleton, Caitlin M.
Boyd, Joel A.
Evans, Paul N.
Emerson, Joanne B.
Zayed, Ahmed A. F.
Hoelzle, Robert D.
Lamberton, Timothy O.
McCalley, Carmody K.
Hodgkins, Suzanne B.
Wilson, Rachel M.
Purvine, Samuel O.
Nicora, Carrie D.
Li, Changsheng
Frolking, Steve
Chanton, Jeffrey P.
Crill, Patrick M.
Saleska, Scott R.
Rich, Virginia I.
Tyson, Gene W.
description As global temperatures rise, large amounts of carbon sequestered in permafrost are becoming available for microbial degradation. Accurate prediction of carbon gas emissions from thawing permafrost is limited by our understanding of these microbial communities. Here we use metagenomic sequencing of 214 samples from a permafrost thaw gradient to recover 1,529 metagenome-assembled genomes, including many from phyla with poor genomic representation. These genomes reflect the diversity of this complex ecosystem, with genus-level representatives for more than sixty per cent of the community. Meta-omic analysis revealed key populations involved in the degradation of organic matter, including bacteria whose genomes encode a previously undescribed fungal pathway for xylose degradation. Microbial and geochemical data highlight lineages that correlate with the production of greenhouse gases and indicate novel syntrophic relationships. Lastly, our findings link changing biogeochemistry to specific microbial lineages involved in carbon processing, and provide key information for predicting the effects of climate change on permafrost systems.
doi_str_mv 10.1038/s41586-018-0338-1
format article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1506092</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1506092</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_15060923</originalsourceid><addsrcrecordid>eNqNiksKwjAUAIMoWD8HcBfcR1-aNo0bN-LnAO5LDK82YpOSBHt9FTyAqxmYIWTFYcNBqG0seKkkA64YCKEYH5GMF5VkhVTVmGQA-acoIadkFuMDAEpeFRnZn9H5DplBl4I19GVxoL6hRoebd7QP3mCM1t2pdTS1evhqj6HTTfAxLcik0c-Iyx_nZH06Xg8X9mm2jsYmNK3xzqFJNS9Bwi4Xf01vnEw_Jw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Genome-centric view of carbon processing in thawing permafrost</title><source>Nature</source><creator>Woodcroft, Ben J. ; Singleton, Caitlin M. ; Boyd, Joel A. ; Evans, Paul N. ; Emerson, Joanne B. ; Zayed, Ahmed A. F. ; Hoelzle, Robert D. ; Lamberton, Timothy O. ; McCalley, Carmody K. ; Hodgkins, Suzanne B. ; Wilson, Rachel M. ; Purvine, Samuel O. ; Nicora, Carrie D. ; Li, Changsheng ; Frolking, Steve ; Chanton, Jeffrey P. ; Crill, Patrick M. ; Saleska, Scott R. ; Rich, Virginia I. ; Tyson, Gene W.</creator><creatorcontrib>Woodcroft, Ben J. ; Singleton, Caitlin M. ; Boyd, Joel A. ; Evans, Paul N. ; Emerson, Joanne B. ; Zayed, Ahmed A. F. ; Hoelzle, Robert D. ; Lamberton, Timothy O. ; McCalley, Carmody K. ; Hodgkins, Suzanne B. ; Wilson, Rachel M. ; Purvine, Samuel O. ; Nicora, Carrie D. ; Li, Changsheng ; Frolking, Steve ; Chanton, Jeffrey P. ; Crill, Patrick M. ; Saleska, Scott R. ; Rich, Virginia I. ; Tyson, Gene W. ; Univ. of Queensland, Brisbane, QLD (Australia). Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences</creatorcontrib><description>As global temperatures rise, large amounts of carbon sequestered in permafrost are becoming available for microbial degradation. Accurate prediction of carbon gas emissions from thawing permafrost is limited by our understanding of these microbial communities. Here we use metagenomic sequencing of 214 samples from a permafrost thaw gradient to recover 1,529 metagenome-assembled genomes, including many from phyla with poor genomic representation. These genomes reflect the diversity of this complex ecosystem, with genus-level representatives for more than sixty per cent of the community. Meta-omic analysis revealed key populations involved in the degradation of organic matter, including bacteria whose genomes encode a previously undescribed fungal pathway for xylose degradation. Microbial and geochemical data highlight lineages that correlate with the production of greenhouse gases and indicate novel syntrophic relationships. Lastly, our findings link changing biogeochemistry to specific microbial lineages involved in carbon processing, and provide key information for predicting the effects of climate change on permafrost systems.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-018-0338-1</identifier><language>eng</language><publisher>United States: Nature Publishing Group</publisher><subject>Archaea ; Bacteria ; BASIC BIOLOGICAL SCIENCES ; ENVIRONMENTAL SCIENCES ; GEOSCIENCES ; Metagenomics ; Permafrost</subject><ispartof>Nature (London), 2018-07, Vol.560 (7716)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000222572400 ; 000000030558102X ; 0000000274306219 ; 0000000249743628 ; 0000000204899207 ; 0000000306707480 ; 0000000199835566 ; 0000000196888208 ; 0000000185599427 ; 0000000151318041 ; 0000000324619548 ; 0000000327932679</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1506092$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Woodcroft, Ben J.</creatorcontrib><creatorcontrib>Singleton, Caitlin M.</creatorcontrib><creatorcontrib>Boyd, Joel A.</creatorcontrib><creatorcontrib>Evans, Paul N.</creatorcontrib><creatorcontrib>Emerson, Joanne B.</creatorcontrib><creatorcontrib>Zayed, Ahmed A. F.</creatorcontrib><creatorcontrib>Hoelzle, Robert D.</creatorcontrib><creatorcontrib>Lamberton, Timothy O.</creatorcontrib><creatorcontrib>McCalley, Carmody K.</creatorcontrib><creatorcontrib>Hodgkins, Suzanne B.</creatorcontrib><creatorcontrib>Wilson, Rachel M.</creatorcontrib><creatorcontrib>Purvine, Samuel O.</creatorcontrib><creatorcontrib>Nicora, Carrie D.</creatorcontrib><creatorcontrib>Li, Changsheng</creatorcontrib><creatorcontrib>Frolking, Steve</creatorcontrib><creatorcontrib>Chanton, Jeffrey P.</creatorcontrib><creatorcontrib>Crill, Patrick M.</creatorcontrib><creatorcontrib>Saleska, Scott R.</creatorcontrib><creatorcontrib>Rich, Virginia I.</creatorcontrib><creatorcontrib>Tyson, Gene W.</creatorcontrib><creatorcontrib>Univ. of Queensland, Brisbane, QLD (Australia). Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences</creatorcontrib><title>Genome-centric view of carbon processing in thawing permafrost</title><title>Nature (London)</title><description>As global temperatures rise, large amounts of carbon sequestered in permafrost are becoming available for microbial degradation. Accurate prediction of carbon gas emissions from thawing permafrost is limited by our understanding of these microbial communities. Here we use metagenomic sequencing of 214 samples from a permafrost thaw gradient to recover 1,529 metagenome-assembled genomes, including many from phyla with poor genomic representation. These genomes reflect the diversity of this complex ecosystem, with genus-level representatives for more than sixty per cent of the community. Meta-omic analysis revealed key populations involved in the degradation of organic matter, including bacteria whose genomes encode a previously undescribed fungal pathway for xylose degradation. Microbial and geochemical data highlight lineages that correlate with the production of greenhouse gases and indicate novel syntrophic relationships. Lastly, our findings link changing biogeochemistry to specific microbial lineages involved in carbon processing, and provide key information for predicting the effects of climate change on permafrost systems.</description><subject>Archaea</subject><subject>Bacteria</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>GEOSCIENCES</subject><subject>Metagenomics</subject><subject>Permafrost</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqNiksKwjAUAIMoWD8HcBfcR1-aNo0bN-LnAO5LDK82YpOSBHt9FTyAqxmYIWTFYcNBqG0seKkkA64YCKEYH5GMF5VkhVTVmGQA-acoIadkFuMDAEpeFRnZn9H5DplBl4I19GVxoL6hRoebd7QP3mCM1t2pdTS1evhqj6HTTfAxLcik0c-Iyx_nZH06Xg8X9mm2jsYmNK3xzqFJNS9Bwi4Xf01vnEw_Jw</recordid><startdate>20180716</startdate><enddate>20180716</enddate><creator>Woodcroft, Ben J.</creator><creator>Singleton, Caitlin M.</creator><creator>Boyd, Joel A.</creator><creator>Evans, Paul N.</creator><creator>Emerson, Joanne B.</creator><creator>Zayed, Ahmed A. F.</creator><creator>Hoelzle, Robert D.</creator><creator>Lamberton, Timothy O.</creator><creator>McCalley, Carmody K.</creator><creator>Hodgkins, Suzanne B.</creator><creator>Wilson, Rachel M.</creator><creator>Purvine, Samuel O.</creator><creator>Nicora, Carrie D.</creator><creator>Li, Changsheng</creator><creator>Frolking, Steve</creator><creator>Chanton, Jeffrey P.</creator><creator>Crill, Patrick M.</creator><creator>Saleska, Scott R.</creator><creator>Rich, Virginia I.</creator><creator>Tyson, Gene W.</creator><general>Nature Publishing Group</general><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000222572400</orcidid><orcidid>https://orcid.org/000000030558102X</orcidid><orcidid>https://orcid.org/0000000274306219</orcidid><orcidid>https://orcid.org/0000000249743628</orcidid><orcidid>https://orcid.org/0000000204899207</orcidid><orcidid>https://orcid.org/0000000306707480</orcidid><orcidid>https://orcid.org/0000000199835566</orcidid><orcidid>https://orcid.org/0000000196888208</orcidid><orcidid>https://orcid.org/0000000185599427</orcidid><orcidid>https://orcid.org/0000000151318041</orcidid><orcidid>https://orcid.org/0000000324619548</orcidid><orcidid>https://orcid.org/0000000327932679</orcidid></search><sort><creationdate>20180716</creationdate><title>Genome-centric view of carbon processing in thawing permafrost</title><author>Woodcroft, Ben J. ; Singleton, Caitlin M. ; Boyd, Joel A. ; Evans, Paul N. ; Emerson, Joanne B. ; Zayed, Ahmed A. F. ; Hoelzle, Robert D. ; Lamberton, Timothy O. ; McCalley, Carmody K. ; Hodgkins, Suzanne B. ; Wilson, Rachel M. ; Purvine, Samuel O. ; Nicora, Carrie D. ; Li, Changsheng ; Frolking, Steve ; Chanton, Jeffrey P. ; Crill, Patrick M. ; Saleska, Scott R. ; Rich, Virginia I. ; Tyson, Gene W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_15060923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Archaea</topic><topic>Bacteria</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>GEOSCIENCES</topic><topic>Metagenomics</topic><topic>Permafrost</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Woodcroft, Ben J.</creatorcontrib><creatorcontrib>Singleton, Caitlin M.</creatorcontrib><creatorcontrib>Boyd, Joel A.</creatorcontrib><creatorcontrib>Evans, Paul N.</creatorcontrib><creatorcontrib>Emerson, Joanne B.</creatorcontrib><creatorcontrib>Zayed, Ahmed A. F.</creatorcontrib><creatorcontrib>Hoelzle, Robert D.</creatorcontrib><creatorcontrib>Lamberton, Timothy O.</creatorcontrib><creatorcontrib>McCalley, Carmody K.</creatorcontrib><creatorcontrib>Hodgkins, Suzanne B.</creatorcontrib><creatorcontrib>Wilson, Rachel M.</creatorcontrib><creatorcontrib>Purvine, Samuel O.</creatorcontrib><creatorcontrib>Nicora, Carrie D.</creatorcontrib><creatorcontrib>Li, Changsheng</creatorcontrib><creatorcontrib>Frolking, Steve</creatorcontrib><creatorcontrib>Chanton, Jeffrey P.</creatorcontrib><creatorcontrib>Crill, Patrick M.</creatorcontrib><creatorcontrib>Saleska, Scott R.</creatorcontrib><creatorcontrib>Rich, Virginia I.</creatorcontrib><creatorcontrib>Tyson, Gene W.</creatorcontrib><creatorcontrib>Univ. of Queensland, Brisbane, QLD (Australia). Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Woodcroft, Ben J.</au><au>Singleton, Caitlin M.</au><au>Boyd, Joel A.</au><au>Evans, Paul N.</au><au>Emerson, Joanne B.</au><au>Zayed, Ahmed A. F.</au><au>Hoelzle, Robert D.</au><au>Lamberton, Timothy O.</au><au>McCalley, Carmody K.</au><au>Hodgkins, Suzanne B.</au><au>Wilson, Rachel M.</au><au>Purvine, Samuel O.</au><au>Nicora, Carrie D.</au><au>Li, Changsheng</au><au>Frolking, Steve</au><au>Chanton, Jeffrey P.</au><au>Crill, Patrick M.</au><au>Saleska, Scott R.</au><au>Rich, Virginia I.</au><au>Tyson, Gene W.</au><aucorp>Univ. of Queensland, Brisbane, QLD (Australia). Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genome-centric view of carbon processing in thawing permafrost</atitle><jtitle>Nature (London)</jtitle><date>2018-07-16</date><risdate>2018</risdate><volume>560</volume><issue>7716</issue><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>As global temperatures rise, large amounts of carbon sequestered in permafrost are becoming available for microbial degradation. Accurate prediction of carbon gas emissions from thawing permafrost is limited by our understanding of these microbial communities. Here we use metagenomic sequencing of 214 samples from a permafrost thaw gradient to recover 1,529 metagenome-assembled genomes, including many from phyla with poor genomic representation. These genomes reflect the diversity of this complex ecosystem, with genus-level representatives for more than sixty per cent of the community. Meta-omic analysis revealed key populations involved in the degradation of organic matter, including bacteria whose genomes encode a previously undescribed fungal pathway for xylose degradation. Microbial and geochemical data highlight lineages that correlate with the production of greenhouse gases and indicate novel syntrophic relationships. Lastly, our findings link changing biogeochemistry to specific microbial lineages involved in carbon processing, and provide key information for predicting the effects of climate change on permafrost systems.</abstract><cop>United States</cop><pub>Nature Publishing Group</pub><doi>10.1038/s41586-018-0338-1</doi><orcidid>https://orcid.org/0000000222572400</orcidid><orcidid>https://orcid.org/000000030558102X</orcidid><orcidid>https://orcid.org/0000000274306219</orcidid><orcidid>https://orcid.org/0000000249743628</orcidid><orcidid>https://orcid.org/0000000204899207</orcidid><orcidid>https://orcid.org/0000000306707480</orcidid><orcidid>https://orcid.org/0000000199835566</orcidid><orcidid>https://orcid.org/0000000196888208</orcidid><orcidid>https://orcid.org/0000000185599427</orcidid><orcidid>https://orcid.org/0000000151318041</orcidid><orcidid>https://orcid.org/0000000324619548</orcidid><orcidid>https://orcid.org/0000000327932679</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2018-07, Vol.560 (7716)
issn 0028-0836
1476-4687
language eng
recordid cdi_osti_scitechconnect_1506092
source Nature
subjects Archaea
Bacteria
BASIC BIOLOGICAL SCIENCES
ENVIRONMENTAL SCIENCES
GEOSCIENCES
Metagenomics
Permafrost
title Genome-centric view of carbon processing in thawing permafrost
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T14%3A14%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genome-centric%20view%20of%20carbon%20processing%20in%20thawing%20permafrost&rft.jtitle=Nature%20(London)&rft.au=Woodcroft,%20Ben%20J.&rft.aucorp=Univ.%20of%20Queensland,%20Brisbane,%20QLD%20(Australia).%20Australian%20Centre%20for%20Ecogenomics,%20School%20of%20Chemistry%20and%20Molecular%20Biosciences&rft.date=2018-07-16&rft.volume=560&rft.issue=7716&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-018-0338-1&rft_dat=%3Costi%3E1506092%3C/osti%3E%3Cgrp_id%3Ecdi_FETCH-osti_scitechconnect_15060923%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true