Loading…

Stochastic Parameterization of Subgrid-Scale Velocity Enhancement of Sea Surface Fluxes

Subgrid-scale (SGS) velocity variations result in gridscale sea surface flux enhancements that must be parameterized in weather and climate models. Traditional parameterizations are deterministic in that they assign a unique value of the SGS velocity flux enhancement to any given configuration of th...

Full description

Saved in:
Bibliographic Details
Published in:Monthly weather review 2019-05, Vol.147 (5), p.1447-1469
Main Authors: Bessac, Julie, Monahan, Adam H., Christensen, Hannah M., Weitzel, Nils
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c337t-9a5105ff94b0475237c6aa6ff1876111aea011b8ce86fd8898eb1ac72c380e933
cites cdi_FETCH-LOGICAL-c337t-9a5105ff94b0475237c6aa6ff1876111aea011b8ce86fd8898eb1ac72c380e933
container_end_page 1469
container_issue 5
container_start_page 1447
container_title Monthly weather review
container_volume 147
creator Bessac, Julie
Monahan, Adam H.
Christensen, Hannah M.
Weitzel, Nils
description Subgrid-scale (SGS) velocity variations result in gridscale sea surface flux enhancements that must be parameterized in weather and climate models. Traditional parameterizations are deterministic in that they assign a unique value of the SGS velocity flux enhancement to any given configuration of the resolved state. In this study, we assess the statistics of SGS velocity flux enhancement over a range of averaging scales (as a proxy for varying model resolution) through systematic coarse-graining of a convection-permitting atmospheric model simulation over the Indian Ocean and west Pacific warm pool. Conditioning the statistics of the SGS velocity flux enhancement on 1) the fluxes associated with the resolved winds and 2) the precipitation rate, we find that the lack of a separation between “resolved” and “unresolved” scales results in a distribution of flux enhancements for each configuration of the resolved state. That is, the SGS velocity flux enhancement should be represented stochastically rather than deterministically. The spatial and temporal statistics of the SGS velocity flux enhancement are investigated by using basic descriptive statistics and through a fit to an anisotropic space–time covariance structure. Potential spatial inhomogeneities of the statistics of the SGS velocity flux enhancement are investigated through regional analysis, although because of the relatively short duration of the simulation (9 days) distinguishing true inhomogeneity from sampling variability is difficult. Perspectives for the implementation of such a stochastic parameterization in weather and climate models are discussed.
doi_str_mv 10.1175/MWR-D-18-0384.1
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1507199</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2395820074</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-9a5105ff94b0475237c6aa6ff1876111aea011b8ce86fd8898eb1ac72c380e933</originalsourceid><addsrcrecordid>eNot0DFPwzAQBWALgUQpzKwRzKZ3cRI7IwIKSEUgCnS0XHOmqdIYbEcCfj2BMt3y6fTeY-wY4QxRlpO7xSO_5Kg4CFWc4Q4bYZkDh6IWu2wEkEsOVVHss4MY1wBQVUU-Yot58nZlYmps9mCC2VCi0Hyb1Pgu8y6b98u30LzyuTUtZS_Uetukr-yqW5nO0oa69KfIDDI4Yymbtv0nxUO250wb6ej_jtnz9Orp4obP7q9vL85n3AohE69NiVA6VxdLKGSZC2krYyrnUMkKEQ0ZQFwqS6pyr0rVipZorMytUEC1EGN2sv3rhwo6DuHIrqzvOrJJYwkS63pAp1v0HvxHTzHpte9DN-TSuahLlQPIYlCTrbLBxxjI6ffQbEz40gj6d2I9TKwvNSr9O7FG8QNGYm5R</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2395820074</pqid></control><display><type>article</type><title>Stochastic Parameterization of Subgrid-Scale Velocity Enhancement of Sea Surface Fluxes</title><source>Free E-Journal (出版社公開部分のみ)</source><creator>Bessac, Julie ; Monahan, Adam H. ; Christensen, Hannah M. ; Weitzel, Nils</creator><creatorcontrib>Bessac, Julie ; Monahan, Adam H. ; Christensen, Hannah M. ; Weitzel, Nils ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>Subgrid-scale (SGS) velocity variations result in gridscale sea surface flux enhancements that must be parameterized in weather and climate models. Traditional parameterizations are deterministic in that they assign a unique value of the SGS velocity flux enhancement to any given configuration of the resolved state. In this study, we assess the statistics of SGS velocity flux enhancement over a range of averaging scales (as a proxy for varying model resolution) through systematic coarse-graining of a convection-permitting atmospheric model simulation over the Indian Ocean and west Pacific warm pool. Conditioning the statistics of the SGS velocity flux enhancement on 1) the fluxes associated with the resolved winds and 2) the precipitation rate, we find that the lack of a separation between “resolved” and “unresolved” scales results in a distribution of flux enhancements for each configuration of the resolved state. That is, the SGS velocity flux enhancement should be represented stochastically rather than deterministically. The spatial and temporal statistics of the SGS velocity flux enhancement are investigated by using basic descriptive statistics and through a fit to an anisotropic space–time covariance structure. Potential spatial inhomogeneities of the statistics of the SGS velocity flux enhancement are investigated through regional analysis, although because of the relatively short duration of the simulation (9 days) distinguishing true inhomogeneity from sampling variability is difficult. Perspectives for the implementation of such a stochastic parameterization in weather and climate models are discussed.</description><identifier>ISSN: 0027-0644</identifier><identifier>EISSN: 1520-0493</identifier><identifier>DOI: 10.1175/MWR-D-18-0384.1</identifier><language>eng</language><publisher>Washington: American Meteorological Society</publisher><subject>atmosphere-ocean interaction ; Atmospheric models ; Climate ; Climate models ; Computer simulation ; Configurations ; Convection ; Covariance ; Dependence ; ENVIRONMENTAL SCIENCES ; Fluctuations ; Fluxes ; Granulation ; Inequality ; Inhomogeneity ; Parameterization ; Precipitation ; Precipitation rate ; Random variables ; Regional analysis ; Regional planning ; regression analysis ; Sea surface ; Simulation ; Spacetime ; Statistical analysis ; Statistical methods ; Statistics ; Studies ; subgrid-scale processes ; Surface fluxes ; Velocity ; Weather ; Wind ; Winds</subject><ispartof>Monthly weather review, 2019-05, Vol.147 (5), p.1447-1469</ispartof><rights>Copyright American Meteorological Society May 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-9a5105ff94b0475237c6aa6ff1876111aea011b8ce86fd8898eb1ac72c380e933</citedby><cites>FETCH-LOGICAL-c337t-9a5105ff94b0475237c6aa6ff1876111aea011b8ce86fd8898eb1ac72c380e933</cites><orcidid>0000-0001-6407-2423 ; 0000000164072423</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1507199$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Bessac, Julie</creatorcontrib><creatorcontrib>Monahan, Adam H.</creatorcontrib><creatorcontrib>Christensen, Hannah M.</creatorcontrib><creatorcontrib>Weitzel, Nils</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Stochastic Parameterization of Subgrid-Scale Velocity Enhancement of Sea Surface Fluxes</title><title>Monthly weather review</title><description>Subgrid-scale (SGS) velocity variations result in gridscale sea surface flux enhancements that must be parameterized in weather and climate models. Traditional parameterizations are deterministic in that they assign a unique value of the SGS velocity flux enhancement to any given configuration of the resolved state. In this study, we assess the statistics of SGS velocity flux enhancement over a range of averaging scales (as a proxy for varying model resolution) through systematic coarse-graining of a convection-permitting atmospheric model simulation over the Indian Ocean and west Pacific warm pool. Conditioning the statistics of the SGS velocity flux enhancement on 1) the fluxes associated with the resolved winds and 2) the precipitation rate, we find that the lack of a separation between “resolved” and “unresolved” scales results in a distribution of flux enhancements for each configuration of the resolved state. That is, the SGS velocity flux enhancement should be represented stochastically rather than deterministically. The spatial and temporal statistics of the SGS velocity flux enhancement are investigated by using basic descriptive statistics and through a fit to an anisotropic space–time covariance structure. Potential spatial inhomogeneities of the statistics of the SGS velocity flux enhancement are investigated through regional analysis, although because of the relatively short duration of the simulation (9 days) distinguishing true inhomogeneity from sampling variability is difficult. Perspectives for the implementation of such a stochastic parameterization in weather and climate models are discussed.</description><subject>atmosphere-ocean interaction</subject><subject>Atmospheric models</subject><subject>Climate</subject><subject>Climate models</subject><subject>Computer simulation</subject><subject>Configurations</subject><subject>Convection</subject><subject>Covariance</subject><subject>Dependence</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>Fluctuations</subject><subject>Fluxes</subject><subject>Granulation</subject><subject>Inequality</subject><subject>Inhomogeneity</subject><subject>Parameterization</subject><subject>Precipitation</subject><subject>Precipitation rate</subject><subject>Random variables</subject><subject>Regional analysis</subject><subject>Regional planning</subject><subject>regression analysis</subject><subject>Sea surface</subject><subject>Simulation</subject><subject>Spacetime</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Statistics</subject><subject>Studies</subject><subject>subgrid-scale processes</subject><subject>Surface fluxes</subject><subject>Velocity</subject><subject>Weather</subject><subject>Wind</subject><subject>Winds</subject><issn>0027-0644</issn><issn>1520-0493</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNot0DFPwzAQBWALgUQpzKwRzKZ3cRI7IwIKSEUgCnS0XHOmqdIYbEcCfj2BMt3y6fTeY-wY4QxRlpO7xSO_5Kg4CFWc4Q4bYZkDh6IWu2wEkEsOVVHss4MY1wBQVUU-Yot58nZlYmps9mCC2VCi0Hyb1Pgu8y6b98u30LzyuTUtZS_Uetukr-yqW5nO0oa69KfIDDI4Yymbtv0nxUO250wb6ej_jtnz9Orp4obP7q9vL85n3AohE69NiVA6VxdLKGSZC2krYyrnUMkKEQ0ZQFwqS6pyr0rVipZorMytUEC1EGN2sv3rhwo6DuHIrqzvOrJJYwkS63pAp1v0HvxHTzHpte9DN-TSuahLlQPIYlCTrbLBxxjI6ffQbEz40gj6d2I9TKwvNSr9O7FG8QNGYm5R</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Bessac, Julie</creator><creator>Monahan, Adam H.</creator><creator>Christensen, Hannah M.</creator><creator>Weitzel, Nils</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-6407-2423</orcidid><orcidid>https://orcid.org/0000000164072423</orcidid></search><sort><creationdate>20190501</creationdate><title>Stochastic Parameterization of Subgrid-Scale Velocity Enhancement of Sea Surface Fluxes</title><author>Bessac, Julie ; Monahan, Adam H. ; Christensen, Hannah M. ; Weitzel, Nils</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-9a5105ff94b0475237c6aa6ff1876111aea011b8ce86fd8898eb1ac72c380e933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>atmosphere-ocean interaction</topic><topic>Atmospheric models</topic><topic>Climate</topic><topic>Climate models</topic><topic>Computer simulation</topic><topic>Configurations</topic><topic>Convection</topic><topic>Covariance</topic><topic>Dependence</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>Fluctuations</topic><topic>Fluxes</topic><topic>Granulation</topic><topic>Inequality</topic><topic>Inhomogeneity</topic><topic>Parameterization</topic><topic>Precipitation</topic><topic>Precipitation rate</topic><topic>Random variables</topic><topic>Regional analysis</topic><topic>Regional planning</topic><topic>regression analysis</topic><topic>Sea surface</topic><topic>Simulation</topic><topic>Spacetime</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Statistics</topic><topic>Studies</topic><topic>subgrid-scale processes</topic><topic>Surface fluxes</topic><topic>Velocity</topic><topic>Weather</topic><topic>Wind</topic><topic>Winds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bessac, Julie</creatorcontrib><creatorcontrib>Monahan, Adam H.</creatorcontrib><creatorcontrib>Christensen, Hannah M.</creatorcontrib><creatorcontrib>Weitzel, Nils</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>ProQuest Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>OSTI.GOV</collection><jtitle>Monthly weather review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bessac, Julie</au><au>Monahan, Adam H.</au><au>Christensen, Hannah M.</au><au>Weitzel, Nils</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stochastic Parameterization of Subgrid-Scale Velocity Enhancement of Sea Surface Fluxes</atitle><jtitle>Monthly weather review</jtitle><date>2019-05-01</date><risdate>2019</risdate><volume>147</volume><issue>5</issue><spage>1447</spage><epage>1469</epage><pages>1447-1469</pages><issn>0027-0644</issn><eissn>1520-0493</eissn><abstract>Subgrid-scale (SGS) velocity variations result in gridscale sea surface flux enhancements that must be parameterized in weather and climate models. Traditional parameterizations are deterministic in that they assign a unique value of the SGS velocity flux enhancement to any given configuration of the resolved state. In this study, we assess the statistics of SGS velocity flux enhancement over a range of averaging scales (as a proxy for varying model resolution) through systematic coarse-graining of a convection-permitting atmospheric model simulation over the Indian Ocean and west Pacific warm pool. Conditioning the statistics of the SGS velocity flux enhancement on 1) the fluxes associated with the resolved winds and 2) the precipitation rate, we find that the lack of a separation between “resolved” and “unresolved” scales results in a distribution of flux enhancements for each configuration of the resolved state. That is, the SGS velocity flux enhancement should be represented stochastically rather than deterministically. The spatial and temporal statistics of the SGS velocity flux enhancement are investigated by using basic descriptive statistics and through a fit to an anisotropic space–time covariance structure. Potential spatial inhomogeneities of the statistics of the SGS velocity flux enhancement are investigated through regional analysis, although because of the relatively short duration of the simulation (9 days) distinguishing true inhomogeneity from sampling variability is difficult. Perspectives for the implementation of such a stochastic parameterization in weather and climate models are discussed.</abstract><cop>Washington</cop><pub>American Meteorological Society</pub><doi>10.1175/MWR-D-18-0384.1</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0001-6407-2423</orcidid><orcidid>https://orcid.org/0000000164072423</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-0644
ispartof Monthly weather review, 2019-05, Vol.147 (5), p.1447-1469
issn 0027-0644
1520-0493
language eng
recordid cdi_osti_scitechconnect_1507199
source Free E-Journal (出版社公開部分のみ)
subjects atmosphere-ocean interaction
Atmospheric models
Climate
Climate models
Computer simulation
Configurations
Convection
Covariance
Dependence
ENVIRONMENTAL SCIENCES
Fluctuations
Fluxes
Granulation
Inequality
Inhomogeneity
Parameterization
Precipitation
Precipitation rate
Random variables
Regional analysis
Regional planning
regression analysis
Sea surface
Simulation
Spacetime
Statistical analysis
Statistical methods
Statistics
Studies
subgrid-scale processes
Surface fluxes
Velocity
Weather
Wind
Winds
title Stochastic Parameterization of Subgrid-Scale Velocity Enhancement of Sea Surface Fluxes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T02%3A32%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stochastic%20Parameterization%20of%20Subgrid-Scale%20Velocity%20Enhancement%20of%20Sea%20Surface%20Fluxes&rft.jtitle=Monthly%20weather%20review&rft.au=Bessac,%20Julie&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2019-05-01&rft.volume=147&rft.issue=5&rft.spage=1447&rft.epage=1469&rft.pages=1447-1469&rft.issn=0027-0644&rft.eissn=1520-0493&rft_id=info:doi/10.1175/MWR-D-18-0384.1&rft_dat=%3Cproquest_osti_%3E2395820074%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c337t-9a5105ff94b0475237c6aa6ff1876111aea011b8ce86fd8898eb1ac72c380e933%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2395820074&rft_id=info:pmid/&rfr_iscdi=true