Loading…

Electrospray ionization photoelectron spectroscopy of cryogenic [EDTA·M(ii)] 2- complexes (M = Ca, V-Zn): electronic structures and intrinsic redox properties

We report here a systematic photoelectron spectroscopy (PES) and theoretical study of divalent transition metal (TM) EDTA complexes [EDTA·TM(ii)]2- (TM = V-Zn), along with the Ca(ii) species for comparison. Gaseous TM dianions (TM = Ca, Mn, Co, Ni, Cu and Zn) were successfully generated via electros...

Full description

Saved in:
Bibliographic Details
Published in:Faraday discussions 2019-07, Vol.217, p.383-395
Main Authors: Yuan, Qinqin, Kong, Xiang-Tao, Hou, Gao-Lei, Jiang, Ling, Wang, Xue-Bin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c308t-8e72d067614ae78e26310c12494f4cae5c180c42786afc4a6c0ded704bb1fb1e3
cites cdi_FETCH-LOGICAL-c308t-8e72d067614ae78e26310c12494f4cae5c180c42786afc4a6c0ded704bb1fb1e3
container_end_page 395
container_issue
container_start_page 383
container_title Faraday discussions
container_volume 217
creator Yuan, Qinqin
Kong, Xiang-Tao
Hou, Gao-Lei
Jiang, Ling
Wang, Xue-Bin
description We report here a systematic photoelectron spectroscopy (PES) and theoretical study of divalent transition metal (TM) EDTA complexes [EDTA·TM(ii)]2- (TM = V-Zn), along with the Ca(ii) species for comparison. Gaseous TM dianions (TM = Ca, Mn, Co, Ni, Cu and Zn) were successfully generated via electrospray ionization, and their PE spectra, with 157, 193, and 266 nm photons, were obtained at 20 K. The spectrum of each TM complex shows an extra peak at the lowest electron binding energy (eBE), compared to that of [EDTA·Ca(ii)]2-. DFT calculations indicate a hexacoordinated metal-EDTA binding motif for all complexes, from which the vertical detachment energies (VDEs) are calculated and these agree well with the experimental values. The calculations further predict negative or very small VDEs for TM(ii) = V, Cr, and Fe, providing a rational explanation for why these three dianionic species are not observed in the gas phase. Direct spectral comparison, electron spin density differences, and MO analyses indicate that the least bound electrons are derived from TM d electrons with appreciable ligand contributions, in contrast to [EDTA·Ca(ii)]2-, in which the detachment is entirely derived from the ligand. The extent of ligand modulation, i.e. non-innocence of EDTA ligands in the oxidation process, is found to vary across the 3rd row of TMs. Comparing the gas-phase VDEs of [EDTA·TM(ii)]2- with the 3rd ionization potentials of TMs and solution phase oxidation potentials reveals intrinsic correlations among these three quantities, with deviations being largely modulated by the ligand participation. The detailed microscopic information about the intrinsic electronic structures and bonding motifs of these complexes obtained in this work will help better understand the rich redox chemistries of these ubiquitous species under diverse environments. The present work, along with our previous studies, indicates that PES coupled with electrospray ionization is a unique ion spectroscopic tool that not only provides intrinsic electronic structure and bonding information about redox species, but also can predict the related electron transfer chemistries with quantitative capability.
doi_str_mv 10.1039/c8fd00175h
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1507454</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2260967000</sourcerecordid><originalsourceid>FETCH-LOGICAL-c308t-8e72d067614ae78e26310c12494f4cae5c180c42786afc4a6c0ded704bb1fb1e3</originalsourceid><addsrcrecordid>eNpd0cFu1DAQBmALgWgpXHgAZNHLFhGwY8eJkThU2y1FasWlcAChyDuZsK6ydrAdqcvL8BjceTJc0nLgNJbm82jsn5CnnL3iTOjX0PQdY7yuNvfIPhdKFpXUzf2bc6ULpSTbI49ivGKMqdx9SPYE01oqoffJz9WAkIKPYzA7ar2zP0zKhY4bnzzOTUfjOCvw4476nkLY-W_oLNAvq5PL49-_LhbWHn2lZUHBb8cBrzHSxQV9S5fmJf1UfHZHb-jdtHwrpjBBmkJWxnXUuhSsi7kRsPPXdAx-xJAsxsfkQW-GiE9u6wH5eLq6XJ4V5x_evV8enxcgWJOKBuuyY6pWXBqsGyyV4Ax4KbXsJRisgDcMZFk3yvQgjQLWYVczuV7zfs1RHJDn81wfk20j2ISwAe9cXrnlFatlJTNazCjv933CmNqtjYDDYBz6KbZlyZlWXGid6eF_9MpPweUnZKWyqnMaWb2YFeS_jQH7dgx2a8Ku5ay9ybZdNqcnf7M9y_jZ7chpvcXuH70LU_wBxGWgTg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2260967000</pqid></control><display><type>article</type><title>Electrospray ionization photoelectron spectroscopy of cryogenic [EDTA·M(ii)] 2- complexes (M = Ca, V-Zn): electronic structures and intrinsic redox properties</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Yuan, Qinqin ; Kong, Xiang-Tao ; Hou, Gao-Lei ; Jiang, Ling ; Wang, Xue-Bin</creator><creatorcontrib>Yuan, Qinqin ; Kong, Xiang-Tao ; Hou, Gao-Lei ; Jiang, Ling ; Wang, Xue-Bin</creatorcontrib><description>We report here a systematic photoelectron spectroscopy (PES) and theoretical study of divalent transition metal (TM) EDTA complexes [EDTA·TM(ii)]2- (TM = V-Zn), along with the Ca(ii) species for comparison. Gaseous TM dianions (TM = Ca, Mn, Co, Ni, Cu and Zn) were successfully generated via electrospray ionization, and their PE spectra, with 157, 193, and 266 nm photons, were obtained at 20 K. The spectrum of each TM complex shows an extra peak at the lowest electron binding energy (eBE), compared to that of [EDTA·Ca(ii)]2-. DFT calculations indicate a hexacoordinated metal-EDTA binding motif for all complexes, from which the vertical detachment energies (VDEs) are calculated and these agree well with the experimental values. The calculations further predict negative or very small VDEs for TM(ii) = V, Cr, and Fe, providing a rational explanation for why these three dianionic species are not observed in the gas phase. Direct spectral comparison, electron spin density differences, and MO analyses indicate that the least bound electrons are derived from TM d electrons with appreciable ligand contributions, in contrast to [EDTA·Ca(ii)]2-, in which the detachment is entirely derived from the ligand. The extent of ligand modulation, i.e. non-innocence of EDTA ligands in the oxidation process, is found to vary across the 3rd row of TMs. Comparing the gas-phase VDEs of [EDTA·TM(ii)]2- with the 3rd ionization potentials of TMs and solution phase oxidation potentials reveals intrinsic correlations among these three quantities, with deviations being largely modulated by the ligand participation. The detailed microscopic information about the intrinsic electronic structures and bonding motifs of these complexes obtained in this work will help better understand the rich redox chemistries of these ubiquitous species under diverse environments. The present work, along with our previous studies, indicates that PES coupled with electrospray ionization is a unique ion spectroscopic tool that not only provides intrinsic electronic structure and bonding information about redox species, but also can predict the related electron transfer chemistries with quantitative capability.</description><identifier>ISSN: 1359-6640</identifier><identifier>EISSN: 1364-5498</identifier><identifier>DOI: 10.1039/c8fd00175h</identifier><identifier>PMID: 30994639</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Anions ; Calcium ; Cartesian coordinates ; Cobalt ; Coordination compounds ; Copper ; Electron spin ; Electron transfer ; Electronic structure ; Electrospraying ; Ethylenediaminetetraacetic acids ; Ionization potentials ; Ions ; Isomers ; Ligands ; Mathematical analysis ; Nickel ; Organic chemistry ; Oxidation ; Photoelectron spectroscopy ; Photoelectrons ; Potential energy ; Spectra ; Spectrum analysis ; Transition metals ; Vapor phases ; Zinc</subject><ispartof>Faraday discussions, 2019-07, Vol.217, p.383-395</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c308t-8e72d067614ae78e26310c12494f4cae5c180c42786afc4a6c0ded704bb1fb1e3</citedby><cites>FETCH-LOGICAL-c308t-8e72d067614ae78e26310c12494f4cae5c180c42786afc4a6c0ded704bb1fb1e3</cites><orcidid>0000-0002-8485-8893 ; 0000-0003-1196-2777 ; 0000-0001-8326-1780 ; 0000000284858893 ; 0000000311962777 ; 0000000183261780</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30994639$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1507454$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Yuan, Qinqin</creatorcontrib><creatorcontrib>Kong, Xiang-Tao</creatorcontrib><creatorcontrib>Hou, Gao-Lei</creatorcontrib><creatorcontrib>Jiang, Ling</creatorcontrib><creatorcontrib>Wang, Xue-Bin</creatorcontrib><title>Electrospray ionization photoelectron spectroscopy of cryogenic [EDTA·M(ii)] 2- complexes (M = Ca, V-Zn): electronic structures and intrinsic redox properties</title><title>Faraday discussions</title><addtitle>Faraday Discuss</addtitle><description>We report here a systematic photoelectron spectroscopy (PES) and theoretical study of divalent transition metal (TM) EDTA complexes [EDTA·TM(ii)]2- (TM = V-Zn), along with the Ca(ii) species for comparison. Gaseous TM dianions (TM = Ca, Mn, Co, Ni, Cu and Zn) were successfully generated via electrospray ionization, and their PE spectra, with 157, 193, and 266 nm photons, were obtained at 20 K. The spectrum of each TM complex shows an extra peak at the lowest electron binding energy (eBE), compared to that of [EDTA·Ca(ii)]2-. DFT calculations indicate a hexacoordinated metal-EDTA binding motif for all complexes, from which the vertical detachment energies (VDEs) are calculated and these agree well with the experimental values. The calculations further predict negative or very small VDEs for TM(ii) = V, Cr, and Fe, providing a rational explanation for why these three dianionic species are not observed in the gas phase. Direct spectral comparison, electron spin density differences, and MO analyses indicate that the least bound electrons are derived from TM d electrons with appreciable ligand contributions, in contrast to [EDTA·Ca(ii)]2-, in which the detachment is entirely derived from the ligand. The extent of ligand modulation, i.e. non-innocence of EDTA ligands in the oxidation process, is found to vary across the 3rd row of TMs. Comparing the gas-phase VDEs of [EDTA·TM(ii)]2- with the 3rd ionization potentials of TMs and solution phase oxidation potentials reveals intrinsic correlations among these three quantities, with deviations being largely modulated by the ligand participation. The detailed microscopic information about the intrinsic electronic structures and bonding motifs of these complexes obtained in this work will help better understand the rich redox chemistries of these ubiquitous species under diverse environments. The present work, along with our previous studies, indicates that PES coupled with electrospray ionization is a unique ion spectroscopic tool that not only provides intrinsic electronic structure and bonding information about redox species, but also can predict the related electron transfer chemistries with quantitative capability.</description><subject>Anions</subject><subject>Calcium</subject><subject>Cartesian coordinates</subject><subject>Cobalt</subject><subject>Coordination compounds</subject><subject>Copper</subject><subject>Electron spin</subject><subject>Electron transfer</subject><subject>Electronic structure</subject><subject>Electrospraying</subject><subject>Ethylenediaminetetraacetic acids</subject><subject>Ionization potentials</subject><subject>Ions</subject><subject>Isomers</subject><subject>Ligands</subject><subject>Mathematical analysis</subject><subject>Nickel</subject><subject>Organic chemistry</subject><subject>Oxidation</subject><subject>Photoelectron spectroscopy</subject><subject>Photoelectrons</subject><subject>Potential energy</subject><subject>Spectra</subject><subject>Spectrum analysis</subject><subject>Transition metals</subject><subject>Vapor phases</subject><subject>Zinc</subject><issn>1359-6640</issn><issn>1364-5498</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpd0cFu1DAQBmALgWgpXHgAZNHLFhGwY8eJkThU2y1FasWlcAChyDuZsK6ydrAdqcvL8BjceTJc0nLgNJbm82jsn5CnnL3iTOjX0PQdY7yuNvfIPhdKFpXUzf2bc6ULpSTbI49ivGKMqdx9SPYE01oqoffJz9WAkIKPYzA7ar2zP0zKhY4bnzzOTUfjOCvw4476nkLY-W_oLNAvq5PL49-_LhbWHn2lZUHBb8cBrzHSxQV9S5fmJf1UfHZHb-jdtHwrpjBBmkJWxnXUuhSsi7kRsPPXdAx-xJAsxsfkQW-GiE9u6wH5eLq6XJ4V5x_evV8enxcgWJOKBuuyY6pWXBqsGyyV4Ax4KbXsJRisgDcMZFk3yvQgjQLWYVczuV7zfs1RHJDn81wfk20j2ISwAe9cXrnlFatlJTNazCjv933CmNqtjYDDYBz6KbZlyZlWXGid6eF_9MpPweUnZKWyqnMaWb2YFeS_jQH7dgx2a8Ku5ay9ybZdNqcnf7M9y_jZ7chpvcXuH70LU_wBxGWgTg</recordid><startdate>20190718</startdate><enddate>20190718</enddate><creator>Yuan, Qinqin</creator><creator>Kong, Xiang-Tao</creator><creator>Hou, Gao-Lei</creator><creator>Jiang, Ling</creator><creator>Wang, Xue-Bin</creator><general>Royal Society of Chemistry</general><general>Royal Society of Chemistry (RSC)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-8485-8893</orcidid><orcidid>https://orcid.org/0000-0003-1196-2777</orcidid><orcidid>https://orcid.org/0000-0001-8326-1780</orcidid><orcidid>https://orcid.org/0000000284858893</orcidid><orcidid>https://orcid.org/0000000311962777</orcidid><orcidid>https://orcid.org/0000000183261780</orcidid></search><sort><creationdate>20190718</creationdate><title>Electrospray ionization photoelectron spectroscopy of cryogenic [EDTA·M(ii)] 2- complexes (M = Ca, V-Zn): electronic structures and intrinsic redox properties</title><author>Yuan, Qinqin ; Kong, Xiang-Tao ; Hou, Gao-Lei ; Jiang, Ling ; Wang, Xue-Bin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c308t-8e72d067614ae78e26310c12494f4cae5c180c42786afc4a6c0ded704bb1fb1e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Anions</topic><topic>Calcium</topic><topic>Cartesian coordinates</topic><topic>Cobalt</topic><topic>Coordination compounds</topic><topic>Copper</topic><topic>Electron spin</topic><topic>Electron transfer</topic><topic>Electronic structure</topic><topic>Electrospraying</topic><topic>Ethylenediaminetetraacetic acids</topic><topic>Ionization potentials</topic><topic>Ions</topic><topic>Isomers</topic><topic>Ligands</topic><topic>Mathematical analysis</topic><topic>Nickel</topic><topic>Organic chemistry</topic><topic>Oxidation</topic><topic>Photoelectron spectroscopy</topic><topic>Photoelectrons</topic><topic>Potential energy</topic><topic>Spectra</topic><topic>Spectrum analysis</topic><topic>Transition metals</topic><topic>Vapor phases</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Qinqin</creatorcontrib><creatorcontrib>Kong, Xiang-Tao</creatorcontrib><creatorcontrib>Hou, Gao-Lei</creatorcontrib><creatorcontrib>Jiang, Ling</creatorcontrib><creatorcontrib>Wang, Xue-Bin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Faraday discussions</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuan, Qinqin</au><au>Kong, Xiang-Tao</au><au>Hou, Gao-Lei</au><au>Jiang, Ling</au><au>Wang, Xue-Bin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrospray ionization photoelectron spectroscopy of cryogenic [EDTA·M(ii)] 2- complexes (M = Ca, V-Zn): electronic structures and intrinsic redox properties</atitle><jtitle>Faraday discussions</jtitle><addtitle>Faraday Discuss</addtitle><date>2019-07-18</date><risdate>2019</risdate><volume>217</volume><spage>383</spage><epage>395</epage><pages>383-395</pages><issn>1359-6640</issn><eissn>1364-5498</eissn><abstract>We report here a systematic photoelectron spectroscopy (PES) and theoretical study of divalent transition metal (TM) EDTA complexes [EDTA·TM(ii)]2- (TM = V-Zn), along with the Ca(ii) species for comparison. Gaseous TM dianions (TM = Ca, Mn, Co, Ni, Cu and Zn) were successfully generated via electrospray ionization, and their PE spectra, with 157, 193, and 266 nm photons, were obtained at 20 K. The spectrum of each TM complex shows an extra peak at the lowest electron binding energy (eBE), compared to that of [EDTA·Ca(ii)]2-. DFT calculations indicate a hexacoordinated metal-EDTA binding motif for all complexes, from which the vertical detachment energies (VDEs) are calculated and these agree well with the experimental values. The calculations further predict negative or very small VDEs for TM(ii) = V, Cr, and Fe, providing a rational explanation for why these three dianionic species are not observed in the gas phase. Direct spectral comparison, electron spin density differences, and MO analyses indicate that the least bound electrons are derived from TM d electrons with appreciable ligand contributions, in contrast to [EDTA·Ca(ii)]2-, in which the detachment is entirely derived from the ligand. The extent of ligand modulation, i.e. non-innocence of EDTA ligands in the oxidation process, is found to vary across the 3rd row of TMs. Comparing the gas-phase VDEs of [EDTA·TM(ii)]2- with the 3rd ionization potentials of TMs and solution phase oxidation potentials reveals intrinsic correlations among these three quantities, with deviations being largely modulated by the ligand participation. The detailed microscopic information about the intrinsic electronic structures and bonding motifs of these complexes obtained in this work will help better understand the rich redox chemistries of these ubiquitous species under diverse environments. The present work, along with our previous studies, indicates that PES coupled with electrospray ionization is a unique ion spectroscopic tool that not only provides intrinsic electronic structure and bonding information about redox species, but also can predict the related electron transfer chemistries with quantitative capability.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>30994639</pmid><doi>10.1039/c8fd00175h</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8485-8893</orcidid><orcidid>https://orcid.org/0000-0003-1196-2777</orcidid><orcidid>https://orcid.org/0000-0001-8326-1780</orcidid><orcidid>https://orcid.org/0000000284858893</orcidid><orcidid>https://orcid.org/0000000311962777</orcidid><orcidid>https://orcid.org/0000000183261780</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1359-6640
ispartof Faraday discussions, 2019-07, Vol.217, p.383-395
issn 1359-6640
1364-5498
language eng
recordid cdi_osti_scitechconnect_1507454
source Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)
subjects Anions
Calcium
Cartesian coordinates
Cobalt
Coordination compounds
Copper
Electron spin
Electron transfer
Electronic structure
Electrospraying
Ethylenediaminetetraacetic acids
Ionization potentials
Ions
Isomers
Ligands
Mathematical analysis
Nickel
Organic chemistry
Oxidation
Photoelectron spectroscopy
Photoelectrons
Potential energy
Spectra
Spectrum analysis
Transition metals
Vapor phases
Zinc
title Electrospray ionization photoelectron spectroscopy of cryogenic [EDTA·M(ii)] 2- complexes (M = Ca, V-Zn): electronic structures and intrinsic redox properties
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T09%3A16%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrospray%20ionization%20photoelectron%20spectroscopy%20of%20cryogenic%20%5BEDTA%C2%B7M(ii)%5D%202-%20complexes%20(M%20=%20Ca,%20V-Zn):%20electronic%20structures%20and%20intrinsic%20redox%20properties&rft.jtitle=Faraday%20discussions&rft.au=Yuan,%20Qinqin&rft.date=2019-07-18&rft.volume=217&rft.spage=383&rft.epage=395&rft.pages=383-395&rft.issn=1359-6640&rft.eissn=1364-5498&rft_id=info:doi/10.1039/c8fd00175h&rft_dat=%3Cproquest_osti_%3E2260967000%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c308t-8e72d067614ae78e26310c12494f4cae5c180c42786afc4a6c0ded704bb1fb1e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2260967000&rft_id=info:pmid/30994639&rfr_iscdi=true