Loading…

Benchmarking Gate Fidelities in a Si / SiGe Two-Qubit Device

We report the first complete characterization of single-qubit and two-qubit gate fidelities in silicon-based spin qubits, including cross talk and error correlations between the two qubits. To do so, we use a combination of standard randomized benchmarking and a recently introduced method called cha...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. X 2019-04, Vol.9 (2), Article 021011
Main Authors: Xue, X., Watson, T. F., Helsen, J., Ward, D. R., Savage, D. E., Lagally, M. G., Coppersmith, S. N., Eriksson, M. A., Wehner, S., Vandersypen, L. M. K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We report the first complete characterization of single-qubit and two-qubit gate fidelities in silicon-based spin qubits, including cross talk and error correlations between the two qubits. To do so, we use a combination of standard randomized benchmarking and a recently introduced method called character randomized benchmarking, which allows for more reliable estimates of the two-qubit fidelity in this system, here giving a 92% fidelity estimate for the controlled-Zgate. Interestingly, with character randomized benchmarking, the two-qubit gate fidelity can be obtained by studying the additional decay induced by interleaving the two-qubit gate in a reference sequence of single-qubit gates only. This work sets the stage for further improvements in all the relevant gate fidelities in silicon spin qubits beyond the error threshold for fault-tolerant quantum computation.
ISSN:2160-3308
2160-3308
DOI:10.1103/PhysRevX.9.021011