Loading…
Measuring Changes in Inductance With Microstrip Resonators
We measure the frequency dependence of a niobium microstrip resonator as a function of temperature from 1.4 to 8.4 K. In a 2-micrometer-wide half-wave resonator, we find the frequency of resonance changes by a factor of 7 over this temperature range. From the resonant frequencies, we extract inducta...
Saved in:
Published in: | IEEE transactions on applied superconductivity 2019-08, Vol.29 (5), p.1-4 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We measure the frequency dependence of a niobium microstrip resonator as a function of temperature from 1.4 to 8.4 K. In a 2-micrometer-wide half-wave resonator, we find the frequency of resonance changes by a factor of 7 over this temperature range. From the resonant frequencies, we extract inductance per unit length, characteristic impedance, and propagation velocity (group velocity). We discuss how these results relate to superconducting electronics. Over the 2 K to 6 K temperature range where superconducting electronic circuits operate, inductance shows a 19% change and both impedance and propagation velocity show an 11% change. |
---|---|
ISSN: | 1051-8223 1558-2515 |
DOI: | 10.1109/TASC.2019.2899867 |