Loading…

Neutron-Antineutron Oscillations from Lattice QCD

Fundamental symmetry tests of baryon number violation in low-energy experiments can probe beyond the standard model (BSM) explanations of the matter-antimatter asymmetry of the Universe. Neutron-antineutron oscillations are predicted to be a signature of many baryogenesis mechanisms involving low-sc...

Full description

Saved in:
Bibliographic Details
Published in:Physical review letters 2019-04, Vol.122 (16), p.162001-162001
Main Authors: Rinaldi, Enrico, Syritsyn, Sergey, Wagman, Michael L, Buchoff, Michael I, Schroeder, Chris, Wasem, Joseph
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 162001
container_issue 16
container_start_page 162001
container_title Physical review letters
container_volume 122
creator Rinaldi, Enrico
Syritsyn, Sergey
Wagman, Michael L
Buchoff, Michael I
Schroeder, Chris
Wasem, Joseph
description Fundamental symmetry tests of baryon number violation in low-energy experiments can probe beyond the standard model (BSM) explanations of the matter-antimatter asymmetry of the Universe. Neutron-antineutron oscillations are predicted to be a signature of many baryogenesis mechanisms involving low-scale baryon number violation. This Letter presents first-principles calculations of neutron-antineutron matrix elements needed to accurately connect measurements of the neutron-antineutron oscillation rate to constraints on |ΔB|=2 baryon number violation in BSM theories. Several important systematic uncertainties are controlled by using a state-of-the-art lattice gauge field ensemble with physical quark masses and approximate chiral symmetry, performing nonperturbative renormalization with perturbative matching to the modified minimal subtraction scheme, and studying excited state effects in two-state fits. Phenomenological implications are highlighted by comparing expected bounds from proposed neutron-antineutron oscillation experiments to predictions of a specific model of postsphaleron baryogenesis. Quantum chromodynamics is found to predict at least an order of magnitude more events in neutron-antineutron oscillation experiments than previous estimates based on the "MIT bag model" for fixed BSM parameters. Lattice artifacts and other systematic uncertainties that are not controlled in this pioneering calculation are not expected to significantly change this conclusion.
doi_str_mv 10.1103/PhysRevLett.122.162001
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1508198</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2222921080</sourcerecordid><originalsourceid>FETCH-LOGICAL-o196t-b77b04773467ddfd19246e0bffb07feab99f4353be336ed7e579069ace95b64e3</originalsourceid><addsrcrecordid>eNpd0E1Lw0AQBuBFFFurf6EEvXhJndlNstljqZ8QrIqeQzaZ0JR2t2Y3Qv-9C60XTzOHh5d3hrEpwgwRxN3bau8-6Kcg72fI-QwzDoAnbIwgVSwRk1M2BhAYKwA5YhfOrSEInuXnbCSCSkEkY4avNPjemnhufGcOe7R0dbfZVL6zxkVtb7dRUXnf1RS9L-4v2VlbbRxdHeeEfT0-fC6e42L59LKYF7FFlflYS6khkVIkmWyatkHFk4xAt60G2VKllWoTkQpNQmTUSEqlgkxVNalUZwmJCbs-5FrnuzI08lSvamsM1b7EFHJUeUC3B7Tr7fdAzpfbztUUyhuygys5F6gET0AFevOPru3Qm3BCUJwrjpBDUNOjGvSWmnLXd9uq35d_HxO_HrRt9Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2222921080</pqid></control><display><type>article</type><title>Neutron-Antineutron Oscillations from Lattice QCD</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Rinaldi, Enrico ; Syritsyn, Sergey ; Wagman, Michael L ; Buchoff, Michael I ; Schroeder, Chris ; Wasem, Joseph</creator><creatorcontrib>Rinaldi, Enrico ; Syritsyn, Sergey ; Wagman, Michael L ; Buchoff, Michael I ; Schroeder, Chris ; Wasem, Joseph ; Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><description>Fundamental symmetry tests of baryon number violation in low-energy experiments can probe beyond the standard model (BSM) explanations of the matter-antimatter asymmetry of the Universe. Neutron-antineutron oscillations are predicted to be a signature of many baryogenesis mechanisms involving low-scale baryon number violation. This Letter presents first-principles calculations of neutron-antineutron matrix elements needed to accurately connect measurements of the neutron-antineutron oscillation rate to constraints on |ΔB|=2 baryon number violation in BSM theories. Several important systematic uncertainties are controlled by using a state-of-the-art lattice gauge field ensemble with physical quark masses and approximate chiral symmetry, performing nonperturbative renormalization with perturbative matching to the modified minimal subtraction scheme, and studying excited state effects in two-state fits. Phenomenological implications are highlighted by comparing expected bounds from proposed neutron-antineutron oscillation experiments to predictions of a specific model of postsphaleron baryogenesis. Quantum chromodynamics is found to predict at least an order of magnitude more events in neutron-antineutron oscillation experiments than previous estimates based on the "MIT bag model" for fixed BSM parameters. Lattice artifacts and other systematic uncertainties that are not controlled in this pioneering calculation are not expected to significantly change this conclusion.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.122.162001</identifier><identifier>PMID: 31075034</identifier><language>eng</language><publisher>United States: American Physical Society</publisher><subject>Antimatter ; Antiparticles ; Asymmetry ; Baryons ; Cosmology ; Experiments ; First principles ; Mathematical models ; Oscillations ; Parameter uncertainty ; PHYSICS OF ELEMENTARY PARTICLES AND FIELDS ; Predictions ; Quantum chromodynamics ; Standard model (particle physics) ; Subtraction ; Symmetry ; Universe</subject><ispartof>Physical review letters, 2019-04, Vol.122 (16), p.162001-162001</ispartof><rights>Copyright American Physical Society Apr 26, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31075034$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1508198$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Rinaldi, Enrico</creatorcontrib><creatorcontrib>Syritsyn, Sergey</creatorcontrib><creatorcontrib>Wagman, Michael L</creatorcontrib><creatorcontrib>Buchoff, Michael I</creatorcontrib><creatorcontrib>Schroeder, Chris</creatorcontrib><creatorcontrib>Wasem, Joseph</creatorcontrib><creatorcontrib>Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><title>Neutron-Antineutron Oscillations from Lattice QCD</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>Fundamental symmetry tests of baryon number violation in low-energy experiments can probe beyond the standard model (BSM) explanations of the matter-antimatter asymmetry of the Universe. Neutron-antineutron oscillations are predicted to be a signature of many baryogenesis mechanisms involving low-scale baryon number violation. This Letter presents first-principles calculations of neutron-antineutron matrix elements needed to accurately connect measurements of the neutron-antineutron oscillation rate to constraints on |ΔB|=2 baryon number violation in BSM theories. Several important systematic uncertainties are controlled by using a state-of-the-art lattice gauge field ensemble with physical quark masses and approximate chiral symmetry, performing nonperturbative renormalization with perturbative matching to the modified minimal subtraction scheme, and studying excited state effects in two-state fits. Phenomenological implications are highlighted by comparing expected bounds from proposed neutron-antineutron oscillation experiments to predictions of a specific model of postsphaleron baryogenesis. Quantum chromodynamics is found to predict at least an order of magnitude more events in neutron-antineutron oscillation experiments than previous estimates based on the "MIT bag model" for fixed BSM parameters. Lattice artifacts and other systematic uncertainties that are not controlled in this pioneering calculation are not expected to significantly change this conclusion.</description><subject>Antimatter</subject><subject>Antiparticles</subject><subject>Asymmetry</subject><subject>Baryons</subject><subject>Cosmology</subject><subject>Experiments</subject><subject>First principles</subject><subject>Mathematical models</subject><subject>Oscillations</subject><subject>Parameter uncertainty</subject><subject>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</subject><subject>Predictions</subject><subject>Quantum chromodynamics</subject><subject>Standard model (particle physics)</subject><subject>Subtraction</subject><subject>Symmetry</subject><subject>Universe</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpd0E1Lw0AQBuBFFFurf6EEvXhJndlNstljqZ8QrIqeQzaZ0JR2t2Y3Qv-9C60XTzOHh5d3hrEpwgwRxN3bau8-6Kcg72fI-QwzDoAnbIwgVSwRk1M2BhAYKwA5YhfOrSEInuXnbCSCSkEkY4avNPjemnhufGcOe7R0dbfZVL6zxkVtb7dRUXnf1RS9L-4v2VlbbRxdHeeEfT0-fC6e42L59LKYF7FFlflYS6khkVIkmWyatkHFk4xAt60G2VKllWoTkQpNQmTUSEqlgkxVNalUZwmJCbs-5FrnuzI08lSvamsM1b7EFHJUeUC3B7Tr7fdAzpfbztUUyhuygys5F6gET0AFevOPru3Qm3BCUJwrjpBDUNOjGvSWmnLXd9uq35d_HxO_HrRt9Q</recordid><startdate>20190426</startdate><enddate>20190426</enddate><creator>Rinaldi, Enrico</creator><creator>Syritsyn, Sergey</creator><creator>Wagman, Michael L</creator><creator>Buchoff, Michael I</creator><creator>Schroeder, Chris</creator><creator>Wasem, Joseph</creator><general>American Physical Society</general><scope>NPM</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20190426</creationdate><title>Neutron-Antineutron Oscillations from Lattice QCD</title><author>Rinaldi, Enrico ; Syritsyn, Sergey ; Wagman, Michael L ; Buchoff, Michael I ; Schroeder, Chris ; Wasem, Joseph</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-o196t-b77b04773467ddfd19246e0bffb07feab99f4353be336ed7e579069ace95b64e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Antimatter</topic><topic>Antiparticles</topic><topic>Asymmetry</topic><topic>Baryons</topic><topic>Cosmology</topic><topic>Experiments</topic><topic>First principles</topic><topic>Mathematical models</topic><topic>Oscillations</topic><topic>Parameter uncertainty</topic><topic>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</topic><topic>Predictions</topic><topic>Quantum chromodynamics</topic><topic>Standard model (particle physics)</topic><topic>Subtraction</topic><topic>Symmetry</topic><topic>Universe</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rinaldi, Enrico</creatorcontrib><creatorcontrib>Syritsyn, Sergey</creatorcontrib><creatorcontrib>Wagman, Michael L</creatorcontrib><creatorcontrib>Buchoff, Michael I</creatorcontrib><creatorcontrib>Schroeder, Chris</creatorcontrib><creatorcontrib>Wasem, Joseph</creatorcontrib><creatorcontrib>Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><collection>PubMed</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rinaldi, Enrico</au><au>Syritsyn, Sergey</au><au>Wagman, Michael L</au><au>Buchoff, Michael I</au><au>Schroeder, Chris</au><au>Wasem, Joseph</au><aucorp>Brookhaven National Lab. (BNL), Upton, NY (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neutron-Antineutron Oscillations from Lattice QCD</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2019-04-26</date><risdate>2019</risdate><volume>122</volume><issue>16</issue><spage>162001</spage><epage>162001</epage><pages>162001-162001</pages><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>Fundamental symmetry tests of baryon number violation in low-energy experiments can probe beyond the standard model (BSM) explanations of the matter-antimatter asymmetry of the Universe. Neutron-antineutron oscillations are predicted to be a signature of many baryogenesis mechanisms involving low-scale baryon number violation. This Letter presents first-principles calculations of neutron-antineutron matrix elements needed to accurately connect measurements of the neutron-antineutron oscillation rate to constraints on |ΔB|=2 baryon number violation in BSM theories. Several important systematic uncertainties are controlled by using a state-of-the-art lattice gauge field ensemble with physical quark masses and approximate chiral symmetry, performing nonperturbative renormalization with perturbative matching to the modified minimal subtraction scheme, and studying excited state effects in two-state fits. Phenomenological implications are highlighted by comparing expected bounds from proposed neutron-antineutron oscillation experiments to predictions of a specific model of postsphaleron baryogenesis. Quantum chromodynamics is found to predict at least an order of magnitude more events in neutron-antineutron oscillation experiments than previous estimates based on the "MIT bag model" for fixed BSM parameters. Lattice artifacts and other systematic uncertainties that are not controlled in this pioneering calculation are not expected to significantly change this conclusion.</abstract><cop>United States</cop><pub>American Physical Society</pub><pmid>31075034</pmid><doi>10.1103/PhysRevLett.122.162001</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2019-04, Vol.122 (16), p.162001-162001
issn 0031-9007
1079-7114
language eng
recordid cdi_osti_scitechconnect_1508198
source American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)
subjects Antimatter
Antiparticles
Asymmetry
Baryons
Cosmology
Experiments
First principles
Mathematical models
Oscillations
Parameter uncertainty
PHYSICS OF ELEMENTARY PARTICLES AND FIELDS
Predictions
Quantum chromodynamics
Standard model (particle physics)
Subtraction
Symmetry
Universe
title Neutron-Antineutron Oscillations from Lattice QCD
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T11%3A54%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neutron-Antineutron%20Oscillations%20from%20Lattice%20QCD&rft.jtitle=Physical%20review%20letters&rft.au=Rinaldi,%20Enrico&rft.aucorp=Brookhaven%20National%20Lab.%20(BNL),%20Upton,%20NY%20(United%20States)&rft.date=2019-04-26&rft.volume=122&rft.issue=16&rft.spage=162001&rft.epage=162001&rft.pages=162001-162001&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.122.162001&rft_dat=%3Cproquest_osti_%3E2222921080%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-o196t-b77b04773467ddfd19246e0bffb07feab99f4353be336ed7e579069ace95b64e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2222921080&rft_id=info:pmid/31075034&rfr_iscdi=true