Loading…
Neutron-Antineutron Oscillations from Lattice QCD
Fundamental symmetry tests of baryon number violation in low-energy experiments can probe beyond the standard model (BSM) explanations of the matter-antimatter asymmetry of the Universe. Neutron-antineutron oscillations are predicted to be a signature of many baryogenesis mechanisms involving low-sc...
Saved in:
Published in: | Physical review letters 2019-04, Vol.122 (16), p.162001-162001 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 162001 |
container_issue | 16 |
container_start_page | 162001 |
container_title | Physical review letters |
container_volume | 122 |
creator | Rinaldi, Enrico Syritsyn, Sergey Wagman, Michael L Buchoff, Michael I Schroeder, Chris Wasem, Joseph |
description | Fundamental symmetry tests of baryon number violation in low-energy experiments can probe beyond the standard model (BSM) explanations of the matter-antimatter asymmetry of the Universe. Neutron-antineutron oscillations are predicted to be a signature of many baryogenesis mechanisms involving low-scale baryon number violation. This Letter presents first-principles calculations of neutron-antineutron matrix elements needed to accurately connect measurements of the neutron-antineutron oscillation rate to constraints on |ΔB|=2 baryon number violation in BSM theories. Several important systematic uncertainties are controlled by using a state-of-the-art lattice gauge field ensemble with physical quark masses and approximate chiral symmetry, performing nonperturbative renormalization with perturbative matching to the modified minimal subtraction scheme, and studying excited state effects in two-state fits. Phenomenological implications are highlighted by comparing expected bounds from proposed neutron-antineutron oscillation experiments to predictions of a specific model of postsphaleron baryogenesis. Quantum chromodynamics is found to predict at least an order of magnitude more events in neutron-antineutron oscillation experiments than previous estimates based on the "MIT bag model" for fixed BSM parameters. Lattice artifacts and other systematic uncertainties that are not controlled in this pioneering calculation are not expected to significantly change this conclusion. |
doi_str_mv | 10.1103/PhysRevLett.122.162001 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1508198</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2222921080</sourcerecordid><originalsourceid>FETCH-LOGICAL-o196t-b77b04773467ddfd19246e0bffb07feab99f4353be336ed7e579069ace95b64e3</originalsourceid><addsrcrecordid>eNpd0E1Lw0AQBuBFFFurf6EEvXhJndlNstljqZ8QrIqeQzaZ0JR2t2Y3Qv-9C60XTzOHh5d3hrEpwgwRxN3bau8-6Kcg72fI-QwzDoAnbIwgVSwRk1M2BhAYKwA5YhfOrSEInuXnbCSCSkEkY4avNPjemnhufGcOe7R0dbfZVL6zxkVtb7dRUXnf1RS9L-4v2VlbbRxdHeeEfT0-fC6e42L59LKYF7FFlflYS6khkVIkmWyatkHFk4xAt60G2VKllWoTkQpNQmTUSEqlgkxVNalUZwmJCbs-5FrnuzI08lSvamsM1b7EFHJUeUC3B7Tr7fdAzpfbztUUyhuygys5F6gET0AFevOPru3Qm3BCUJwrjpBDUNOjGvSWmnLXd9uq35d_HxO_HrRt9Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2222921080</pqid></control><display><type>article</type><title>Neutron-Antineutron Oscillations from Lattice QCD</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Rinaldi, Enrico ; Syritsyn, Sergey ; Wagman, Michael L ; Buchoff, Michael I ; Schroeder, Chris ; Wasem, Joseph</creator><creatorcontrib>Rinaldi, Enrico ; Syritsyn, Sergey ; Wagman, Michael L ; Buchoff, Michael I ; Schroeder, Chris ; Wasem, Joseph ; Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><description>Fundamental symmetry tests of baryon number violation in low-energy experiments can probe beyond the standard model (BSM) explanations of the matter-antimatter asymmetry of the Universe. Neutron-antineutron oscillations are predicted to be a signature of many baryogenesis mechanisms involving low-scale baryon number violation. This Letter presents first-principles calculations of neutron-antineutron matrix elements needed to accurately connect measurements of the neutron-antineutron oscillation rate to constraints on |ΔB|=2 baryon number violation in BSM theories. Several important systematic uncertainties are controlled by using a state-of-the-art lattice gauge field ensemble with physical quark masses and approximate chiral symmetry, performing nonperturbative renormalization with perturbative matching to the modified minimal subtraction scheme, and studying excited state effects in two-state fits. Phenomenological implications are highlighted by comparing expected bounds from proposed neutron-antineutron oscillation experiments to predictions of a specific model of postsphaleron baryogenesis. Quantum chromodynamics is found to predict at least an order of magnitude more events in neutron-antineutron oscillation experiments than previous estimates based on the "MIT bag model" for fixed BSM parameters. Lattice artifacts and other systematic uncertainties that are not controlled in this pioneering calculation are not expected to significantly change this conclusion.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.122.162001</identifier><identifier>PMID: 31075034</identifier><language>eng</language><publisher>United States: American Physical Society</publisher><subject>Antimatter ; Antiparticles ; Asymmetry ; Baryons ; Cosmology ; Experiments ; First principles ; Mathematical models ; Oscillations ; Parameter uncertainty ; PHYSICS OF ELEMENTARY PARTICLES AND FIELDS ; Predictions ; Quantum chromodynamics ; Standard model (particle physics) ; Subtraction ; Symmetry ; Universe</subject><ispartof>Physical review letters, 2019-04, Vol.122 (16), p.162001-162001</ispartof><rights>Copyright American Physical Society Apr 26, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31075034$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1508198$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Rinaldi, Enrico</creatorcontrib><creatorcontrib>Syritsyn, Sergey</creatorcontrib><creatorcontrib>Wagman, Michael L</creatorcontrib><creatorcontrib>Buchoff, Michael I</creatorcontrib><creatorcontrib>Schroeder, Chris</creatorcontrib><creatorcontrib>Wasem, Joseph</creatorcontrib><creatorcontrib>Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><title>Neutron-Antineutron Oscillations from Lattice QCD</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>Fundamental symmetry tests of baryon number violation in low-energy experiments can probe beyond the standard model (BSM) explanations of the matter-antimatter asymmetry of the Universe. Neutron-antineutron oscillations are predicted to be a signature of many baryogenesis mechanisms involving low-scale baryon number violation. This Letter presents first-principles calculations of neutron-antineutron matrix elements needed to accurately connect measurements of the neutron-antineutron oscillation rate to constraints on |ΔB|=2 baryon number violation in BSM theories. Several important systematic uncertainties are controlled by using a state-of-the-art lattice gauge field ensemble with physical quark masses and approximate chiral symmetry, performing nonperturbative renormalization with perturbative matching to the modified minimal subtraction scheme, and studying excited state effects in two-state fits. Phenomenological implications are highlighted by comparing expected bounds from proposed neutron-antineutron oscillation experiments to predictions of a specific model of postsphaleron baryogenesis. Quantum chromodynamics is found to predict at least an order of magnitude more events in neutron-antineutron oscillation experiments than previous estimates based on the "MIT bag model" for fixed BSM parameters. Lattice artifacts and other systematic uncertainties that are not controlled in this pioneering calculation are not expected to significantly change this conclusion.</description><subject>Antimatter</subject><subject>Antiparticles</subject><subject>Asymmetry</subject><subject>Baryons</subject><subject>Cosmology</subject><subject>Experiments</subject><subject>First principles</subject><subject>Mathematical models</subject><subject>Oscillations</subject><subject>Parameter uncertainty</subject><subject>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</subject><subject>Predictions</subject><subject>Quantum chromodynamics</subject><subject>Standard model (particle physics)</subject><subject>Subtraction</subject><subject>Symmetry</subject><subject>Universe</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpd0E1Lw0AQBuBFFFurf6EEvXhJndlNstljqZ8QrIqeQzaZ0JR2t2Y3Qv-9C60XTzOHh5d3hrEpwgwRxN3bau8-6Kcg72fI-QwzDoAnbIwgVSwRk1M2BhAYKwA5YhfOrSEInuXnbCSCSkEkY4avNPjemnhufGcOe7R0dbfZVL6zxkVtb7dRUXnf1RS9L-4v2VlbbRxdHeeEfT0-fC6e42L59LKYF7FFlflYS6khkVIkmWyatkHFk4xAt60G2VKllWoTkQpNQmTUSEqlgkxVNalUZwmJCbs-5FrnuzI08lSvamsM1b7EFHJUeUC3B7Tr7fdAzpfbztUUyhuygys5F6gET0AFevOPru3Qm3BCUJwrjpBDUNOjGvSWmnLXd9uq35d_HxO_HrRt9Q</recordid><startdate>20190426</startdate><enddate>20190426</enddate><creator>Rinaldi, Enrico</creator><creator>Syritsyn, Sergey</creator><creator>Wagman, Michael L</creator><creator>Buchoff, Michael I</creator><creator>Schroeder, Chris</creator><creator>Wasem, Joseph</creator><general>American Physical Society</general><scope>NPM</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20190426</creationdate><title>Neutron-Antineutron Oscillations from Lattice QCD</title><author>Rinaldi, Enrico ; Syritsyn, Sergey ; Wagman, Michael L ; Buchoff, Michael I ; Schroeder, Chris ; Wasem, Joseph</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-o196t-b77b04773467ddfd19246e0bffb07feab99f4353be336ed7e579069ace95b64e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Antimatter</topic><topic>Antiparticles</topic><topic>Asymmetry</topic><topic>Baryons</topic><topic>Cosmology</topic><topic>Experiments</topic><topic>First principles</topic><topic>Mathematical models</topic><topic>Oscillations</topic><topic>Parameter uncertainty</topic><topic>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</topic><topic>Predictions</topic><topic>Quantum chromodynamics</topic><topic>Standard model (particle physics)</topic><topic>Subtraction</topic><topic>Symmetry</topic><topic>Universe</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rinaldi, Enrico</creatorcontrib><creatorcontrib>Syritsyn, Sergey</creatorcontrib><creatorcontrib>Wagman, Michael L</creatorcontrib><creatorcontrib>Buchoff, Michael I</creatorcontrib><creatorcontrib>Schroeder, Chris</creatorcontrib><creatorcontrib>Wasem, Joseph</creatorcontrib><creatorcontrib>Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><collection>PubMed</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rinaldi, Enrico</au><au>Syritsyn, Sergey</au><au>Wagman, Michael L</au><au>Buchoff, Michael I</au><au>Schroeder, Chris</au><au>Wasem, Joseph</au><aucorp>Brookhaven National Lab. (BNL), Upton, NY (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neutron-Antineutron Oscillations from Lattice QCD</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2019-04-26</date><risdate>2019</risdate><volume>122</volume><issue>16</issue><spage>162001</spage><epage>162001</epage><pages>162001-162001</pages><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>Fundamental symmetry tests of baryon number violation in low-energy experiments can probe beyond the standard model (BSM) explanations of the matter-antimatter asymmetry of the Universe. Neutron-antineutron oscillations are predicted to be a signature of many baryogenesis mechanisms involving low-scale baryon number violation. This Letter presents first-principles calculations of neutron-antineutron matrix elements needed to accurately connect measurements of the neutron-antineutron oscillation rate to constraints on |ΔB|=2 baryon number violation in BSM theories. Several important systematic uncertainties are controlled by using a state-of-the-art lattice gauge field ensemble with physical quark masses and approximate chiral symmetry, performing nonperturbative renormalization with perturbative matching to the modified minimal subtraction scheme, and studying excited state effects in two-state fits. Phenomenological implications are highlighted by comparing expected bounds from proposed neutron-antineutron oscillation experiments to predictions of a specific model of postsphaleron baryogenesis. Quantum chromodynamics is found to predict at least an order of magnitude more events in neutron-antineutron oscillation experiments than previous estimates based on the "MIT bag model" for fixed BSM parameters. Lattice artifacts and other systematic uncertainties that are not controlled in this pioneering calculation are not expected to significantly change this conclusion.</abstract><cop>United States</cop><pub>American Physical Society</pub><pmid>31075034</pmid><doi>10.1103/PhysRevLett.122.162001</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Physical review letters, 2019-04, Vol.122 (16), p.162001-162001 |
issn | 0031-9007 1079-7114 |
language | eng |
recordid | cdi_osti_scitechconnect_1508198 |
source | American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list) |
subjects | Antimatter Antiparticles Asymmetry Baryons Cosmology Experiments First principles Mathematical models Oscillations Parameter uncertainty PHYSICS OF ELEMENTARY PARTICLES AND FIELDS Predictions Quantum chromodynamics Standard model (particle physics) Subtraction Symmetry Universe |
title | Neutron-Antineutron Oscillations from Lattice QCD |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T11%3A54%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neutron-Antineutron%20Oscillations%20from%20Lattice%20QCD&rft.jtitle=Physical%20review%20letters&rft.au=Rinaldi,%20Enrico&rft.aucorp=Brookhaven%20National%20Lab.%20(BNL),%20Upton,%20NY%20(United%20States)&rft.date=2019-04-26&rft.volume=122&rft.issue=16&rft.spage=162001&rft.epage=162001&rft.pages=162001-162001&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.122.162001&rft_dat=%3Cproquest_osti_%3E2222921080%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-o196t-b77b04773467ddfd19246e0bffb07feab99f4353be336ed7e579069ace95b64e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2222921080&rft_id=info:pmid/31075034&rfr_iscdi=true |